精英家教网 > 高中数学 > 题目详情
在数列{an}中,如果对任意n∈N+都有
an+2-an+1an+1-an
=p(p为常数),则称数列{an}为“等差比”数列,p叫数列{an}的“公差比”.现给出如下命题:
(1)等差比数列{an}的公差比p一定不为零;
(2)若数列{an}(n∈N+)是等比数列,则数列{an}一定是等差比数列;
(3)若等比数列{an}是等差比数列,则等比数列{an}的公比与公差比相等.
则正确命题的序号是
 
分析:(1)举例说明:公差比为0,an+2-an+1=0,数列{an}为常数列,所以的分母为0,无意义;
(2)常数列显然不成立;
(3)设an=a1•qn-1,则
an+2-an+1
an+1-an
=q
命题正确,
故答案为(1),(3)
解答:解:(1)若公差比为0,则an+2-an+1=0,故{an}为常数列,从而的分母为0,无意义,所以公差比一定不为零;
(2)常数列显然不成立;
(3)设an=a1•qn-1,则
an+2-an+1
an+1-an
=q
命题正确,
故答案为(1)、(3)
点评:本题以新定义公式为载体,考查了等比数列的通项公式,前n项和公式的灵活应用;也考查了一定的计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、在数列{an}中,a1=1,an=an-1+n,n≥2.为计算这个数列前10项的和,现给出该问题算法的程序框图(如图所示),则图中判断框(1)处合适的语句是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

12、在数列{an}中,若存在非零整数T,使得am+T=am对于任意的正整数m均成立,那么称数列{an}为周期数列,其中T叫做数列{an}的周期.若数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),当数列{xn}的周期最小时,该数列的前2010项的和是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an=an-1+n,n≥2.为计算这个数列前5项的和,现给出该问题算法的程序框图(如图所示),则图中判断框(1)处应填
i≥5
i≥5

查看答案和解析>>

科目:高中数学 来源:2010年广东省佛山市南海区高考题例研究数学试卷(文科)(解析版) 题型:选择题

在数列{an}中,a1=1,an=an-1+n,n≥2.为计算这个数列前10项的和,现给出该问题算法的程序框图(如图所示),则图中判断框(1)处合适的语句是( )

A.i≥8
B.i≥9
C.i≥10
D.i≥11

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省舟山市七校高三(下)3月联考数学试卷(理科)(解析版) 题型:选择题

在数列{an}中,若存在非零整数T,使得am+T=am对于任意的正整数m均成立,那么称数列{an}为周期数列,其中T叫做数列{an}的周期.若数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),当数列{xn}的周期最小时,该数列的前2010项的和是( )
A.669
B.670
C.1339
D.1340

查看答案和解析>>

同步练习册答案