精英家教网 > 高中数学 > 题目详情

【题目】已知直四棱柱的底面ABCD是菱形,E上任意一点.

1)求证:平面平面

2)设,当E的中点时,求点E到平面的距离.

【答案】(1)详见解析;(2).

【解析】

1)由题,,又ABCD是菱形,那么,可知平面平面BDE,即得证;(2)由等体积法,计算即得。

解:(1)证明:∵四棱柱是直四棱柱,

底面ABCD,而底面ABCD,∴.

ABCD是菱形,有,∵,故平面

平面BDE,∴平面平面.

2)法一:设ACBD的交点为O,连OE,由(1)知点E到平面的距离即点E到直线的距离.又在三角形中,,得OE边上的高为,故E到直线的距离.

法二:由,而

.

[Failed to download image : http://192.168.0.10:8086/QBM/2020/3/7/2414489840492544/2415946282483712/EXPLANATION/6b6d144eb17043c7bd8f25c3951e7b32.png]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的中a1=1a2=2,且满足.

1)求数列{an}的通项公式;

2)设bn,记数列{bn}的前n项和为Tn,若|Tn+1|,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”逐渐成为人们支付购物的一种形式.某机构对“使用微信支付”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信支付”赞成人数如下表.

年龄

(单位:岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄45岁为分界点”,由以上计数据完成下面列联表,并判断是否有99%的把握认为“使用微信支付”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在的被调查人中按照赞成与不赞成分层抽样,抽取5人进行追踪调查,在5人中抽取3人做专访,求3人中不赞成使用微信支付的人数的分布列和期望值.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,已知平面是边长为的正三角形,分别为的中点.

1)若,求直线所成角的余弦值;

2)若平面平面,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,已知点P为侧面上的一动点,则下列结论正确的是(

A.若点P总保持,则动点P的轨迹是一条线段;

B.若点P到点A的距离为,则动点P的轨迹是一段圆弧;

C.P到直线与直线的距离相等,则动点P的轨迹是一段抛物线;

D.P到直线与直线的距离比为,则动点P的轨迹是一段双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为某市国庆节7天假期的商品房日认购量(单位:套)与日成交量(单位:套)的折线图,则下面结论中正确的是( )

A.日成交量的中位数是16

B.日成交量超过日平均成交量的有1

C.日认购量与日期是正相关关系

D.日认购量的方差大于日成交量的方差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,且保费与上一年度车辆发生道路交通事故的情况相联系.发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和费率浮动比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮

上两个年度未发生有责任道路交通事故

下浮

上三个及以上年度未发生有责任道路交通事故

下浮

上一个年度发生一次有责任不涉及死亡的道路交通事故

上一个年度发生两次及两次以上有责任道路交通事故

上浮

上一个年度发生有责任道路交通死亡事故

上浮

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;

2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000.且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:

①若该销售商店内有6辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆车,求这2辆车恰好有一辆为事故车的概率;

②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为2,过点.

1)求椭圆的标准方程;

2)设椭圆的右焦点为F,定点,过点F且斜率不为零的直线l与椭圆交于AB两点,以线段AP为直径的圆与直线的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案