精英家教网 > 高中数学 > 题目详情
9.函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在一个周期内的图象如图,此函数的解析式为y=2sin(2x+$\frac{2π}{3}$).

分析 根据三角函数的图象求出A,ω和φ的值,即可得到结论.

解答 解:由图象知A=2,函数的周期T=2•[$\frac{5π}{12}$-(-$\frac{π}{12}$)]=2×$\frac{6π}{12}$=π,
即T=$\frac{2π}{ω}$=π,即ω=2,
此时y=2sin(2x+φ),
当x=-$\frac{π}{12}$时,f(-$\frac{π}{12}$)=2sin(-$\frac{π}{12}$×2+φ)=2,
即sin(φ-$\frac{π}{6}$)=1,
则φ-$\frac{π}{6}$=$\frac{π}{2}$+2kπ,
即φ=$\frac{2π}{3}$+2kπ,
∵0<φ<π,
∴当k=0时,φ=$\frac{2π}{3}$,
则$y=2sin(2x+\frac{2π}{3})$,
故答案为:y=2sin(2x+$\frac{2π}{3}$)

点评 本题主要考查三角函数解析式的求解,根据三角函数的图象和性质求出A,ω和φ的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,点$A(1,\frac{{\sqrt{3}}}{2})$在椭圆C上,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5的相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设{an}是等差数列,{bn}是各项都为正整数的等比数列,且a1=b1=1,a13b2=50,a8+b2=a3+a4+5,n∈N*
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)设cn=(-1)n-1•λ•bn+2${\;}^{{a}_{n}}$(λ为非零实数,n为正整数),试确定实数λ的取值范围,使得对任意的正整数n,都有cn+1>cn恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知动圆M与y轴相切且与定圆A:(x-3)2+y2=9外切,则动圆的圆心M的轨迹方程是(  )
A.y2=12x(x>0)B.y=0(x<0)
C.y2=12xD.y2=12x(x>0)或y=0(x<0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)在区间[a,b]上单调,且图象是连续不断的,若f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上(  )
A.至少有一实根B.至多有一实根C.没有实根D.必有唯一的实根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=loga(3+2x),g(x)=loga(3-2x)(a>0,且a≠1).
(Ⅰ)求函数F(x)=f(x)-g(x)的定义域;
(Ⅱ)判断函数F(x)=f(x)-g(x)的奇偶性,并予以证明;
(Ⅲ)求使得f(x)-g(x)>0的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某工厂将生产的某种芯片的质量按测试指标划分为五组(指标数值越大.产品质量越好),现随机抽取芯片50件进行检测.检测结果统计如下:
 组号 测试指标 频数 频率
 第一组[80,84] 8 0.16
 第二组[84,88] x 0.24
 第三组[88,92] 15 p
 第四组[92,96] 10 q
 第五组[96,100] y 0.1
 合          计 50 1
(1)试确定x,y,p.q的值,并补全频率分布直方图;
(2)为了挑选最优质的芯片,工厂决定在第三、四、五组中用分层抽样法抽取6件产品进行第二次检测,最终决定选用2件产品,求2件产品中至少有1件来自第四组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤2}\\{lo{g}_{2}(x-1),x>2}\end{array}\right.$,则f(f(6))的值为log25-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+(a+1)x+b,f(3)=3,f(x)≥x对x∈R恒成立,求实数a,b的值.

查看答案和解析>>

同步练习册答案