精英家教网 > 高中数学 > 题目详情

【题目】如图1所示,在等腰梯形,垂足为.将沿折起到的位置,使平面平面,如图2所示,点为棱的中点.

1)求证:平面

2)求证:平面

3)求三棱锥的体积.

【答案】1)证明见解析;(2)证明见解析;(3.

【解析】

1)在图1的等腰梯形内,过的垂线,垂足为,可得四边形为正方形,且中点.在图2中,连结,证明.结合,利用平面与平面平行的判定可得平面平面,从而得到平面

2)由平面平面,得平面.进一步得到.求解三角形证明.再由线面垂直的判定可得平面

3)证明,可得线段为三棱锥底面的高,然后利用等积法求三棱锥的体积.

1)在如图的等腰梯形内,

的垂线,垂足为

四边形为正方形,且中点.

在如图中,

连结

的中点,

平面平面

平面平面

平面

2平面平面

平面平面平面

平面

平面

,满足

平面

3

又线段为三棱锥底面的高,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚.如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:

月份

违章驾驶员人数

(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程

(Ⅱ)预测该路段月份的不“礼让斑马线”违章驾驶员人数.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系内三点.

(1) 求过三点的圆的方程,并指出圆心坐标与圆的半径

(2)求过点与条件 (1) 的圆相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求f(x)的极值;
(2)当0<x<e时,求证:f(e+x)>f(e﹣x);
(3)设函数f(x)图象与直线y=m的两交点分别为A(x1 , f(x1)、B(x2 , f(x2)),中点横坐标为x0 , 证明:f'(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有的把握认为选手成绩“优秀”与文化程度有关?

优秀

合格

合计

大学组

中学组

合计

注:,其中.

(2)若参赛选手共万人,用频率估计概率,试估计其中优秀等级的选手人数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin2x的图象沿x轴向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若函数g(x)的图象关于y轴对称,则当φ取最小的值时,g(0)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 (吨)与相应的生产能耗 (吨标准煤)的几组对照数据

(1)

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;

(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据1求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

(附: ,,,,其中,为样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂家具车间造型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张型型桌子分别需要1小时和2小时,漆工油漆一张型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张型型桌子分别获利润2千元和3千元.

(1)列出满足生产条件的数学关系式,并画出可行域;

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案