精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线上一点到其焦点下的距离为10.

(1)求抛物线C的方程;

(2)设过焦点F的的直线与抛物线C交于两点,且抛物线在两点处的切线分别交x轴于两点,求的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)由抛物线的定义,可得到,即可求出,从而得到抛物线的方程;(Ⅱ)直线的斜率一定存在,可设斜率为,直线,设,由可得,然后对求导,可得到的斜率及方程表达式,进而可表示出,同理可得到的表达式,然后对化简可求出范围。

解:(Ⅰ)已知到焦点的距离为10,则点到准线的距离为10.

∵抛物线的准线为,∴

解得,∴抛物线的方程为.

(Ⅱ)由已知可判断直线的斜率存在,设斜率为,因为,则.

,由消去得,

.

由于抛物线也是函数的图象,且,则.

,解得,∴,从而.

同理可得,

.

,∴的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足.其中星等为的星的亮度为.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,则与最接近的是(较小时, )

A.1.24B.1.25C.1.26D.1.27

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的

A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论函数的单调性;

2)若,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的普通方程和的直角坐标方程;

2)过点作倾斜角为的直线两点,过作与平行的直线点,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

1)讨论的单调性;

2)证明:当时,.

3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标xOy中,以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为.

1)求椭圆的直角坐标方程;

2)已知过的直线与椭圆C交于AB两点,且两点与左右顶点不重合,若,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为,右焦点为F,连结TF并延长与椭圆交于点S,且.

1)求椭圆的方程;

2)已知直线x轴交于点M,过点M的直线AB交于AB两点,点P为直线上任意一点,设直线AB与直线交于点N,记PAPBPN的斜率分别为,则是否存在实数,使得恒成立?若是,请求出的值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PO垂直圆O所在的平面,AB是圆O的一条直径,C为圆周上异于AB的动点,D为弦BC的中点,

1)证明:平面平面

2)当四面体PABC的体积最大时,求B到平面PAC的距离.

查看答案和解析>>

同步练习册答案