精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.

(1)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;

(2)求证:无论点E在BC边的何处,都有

(3)当为何值时,与平面所成角的大小为45°.

 

【答案】

(1)EF//面PAC (2)因PA⊥底面ABCD,所以DA⊥PA,又DA⊥AB,所以DA⊥面PAB,又DA//CB,所以CB⊥面PAB所以,因为AF⊥PB所以AF⊥面PBC有 (3)

【解析】

试题分析:⑴当E是BC中点时,因F是PB的中点,所以EF为的中位线,

故EF//PC,又因面PAC,面PAC,所以EF//面PAC     4分

⑵证明:因PA⊥底面ABCD,所以DA⊥PA,又DA⊥AB,所以DA⊥面PAB,

又DA//CB,所以CB⊥面PAB,而面PAB,所以

又在等腰三角形PAB中,中线AF⊥PB,PBCB=B,所以AF⊥面PBC.

而PE面PBC,所以无论点E在BC上何处,都有      8分

⑶以A为原点,分别以AD、AB、AP为x\y\z轴建立坐标系,设

,设面PDE的法向量为

,得,取,又

则由,得,解得.

故当时,PA与面PDE成角         12分

考点:线面平行垂直的判定及线面角的求解

点评:证明线面平行时常借助于已知的中点转化为线线平行,第三问求线面角采用空间向量的方法思路较简单,只需求出直线的方向向量与平面的法向量,代入公式即可

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,CE∥AB.
(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,且CD与平面PAD所成的角为45°,求点D到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是正方形,AC∩BD=O,PA⊥底面ABCD,OE⊥PC于E.
(1)求证:PC⊥平面BDE;
(2)设PA=AB=2,求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥平面ABCD,点E,F分别是AB和PC的中点.
(1)求证:EF∥平面PAD;
(2)若CD=2PD=2AD=2,四棱锥P-ABCD外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=
12
CD=2,PA=2,M,E,F分别是PA,PC,PD的中点.
(1)证明:EF∥平面PAB;
(2)证明:PD⊥平面ABEF;
(3)求直线ME与平面ABEF所成角的正弦值.

查看答案和解析>>

同步练习册答案