精英家教网 > 高中数学 > 题目详情
已知点M(3,1),直线l:ax-y+4=0及圆C:x2+y2-2x-4y+1=0
(1)求经过M点的圆C的切线方程;
(2)若直线l与圆C相切,求a的值;
(3)若直线l与圆C相交与A,B两点,且弦AB的长为2
3
,求a的值.
分析:(1)圆方程化为标准方程,分类讨论,利用圆心到直线的距离等于半径,即可求经过M点的圆C的切线方程;
(2)利用圆心到直线的距离等于半径,即可求出a的值;
(3)利用弦心距与半径,半弦长的关系,即可求出a的值.
解答:解:(1)圆方程化为(x-1)2+(y-2)2=4
∴圆心(1,2),半径为2
斜率不存在时,经过M点的直线方程为x=3,满足题意;
设经过M点的圆C的切线方程为y-1=k(x-3),即kx-y-3k+1=0
∴d=
|k-2-3k+1|
k2+1
=2
∴k=
3
4

∴切线方程为3x-4y-5=0
综上,经过M点的圆C的切线方程为x=3和3x-4y-5=0;
(2)∵直线l与圆C相切,∴
|a-2+4|
a2+1
=2,解得a=0或a=
4
3

(3)圆心(1,2)到直线ax-y+4=0的距离为
|a+2|
a2+1

∵直线l与圆C相交与A,B两点,且弦AB的长为2
3

∴(
|a+2|
a2+1
2+(
2
3
2
2=4,解得a=-
3
4
点评:本题考查直线与圆的位置关系,圆心到直线的距离公式的应用,考查计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M(3,1),圆(x-1)2+(y-2)2=4.
(1)求过M点的圆的切线方程;
(2)若直线ax-y+4=0与圆相交于A、B两点,且弦AB的长为2
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.
(1)求过M点的圆的切线方程;
(2)若直线ax-y+4=0与圆相切,求a的值;
(3)若直线ax-y+4=0与圆相交于A,B两点,且弦AB的长为2
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点M(3,1),直线l:ax-y+4=0及圆C:x2+y2-2x-4y+1=0
(1)求经过M点的圆C的切线方程;
(2)若直线l与圆C相切,求a的值;
(3)若直线l与圆C相交与A,B两点,且弦AB的长为2数学公式,求a的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省鹤岗一中高二(上)期中数学试卷(文科)(解析版) 题型:解答题

已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.
(1)求过M点的圆的切线方程;
(2)若直线ax-y+4=0与圆相切,求a的值;
(3)若直线ax-y+4=0与圆相交于A,B两点,且弦AB的长为,求a的值.

查看答案和解析>>

同步练习册答案