精英家教网 > 高中数学 > 题目详情
10.已知定义在R上的奇函数f(x)满足f(x+2)=f(x),且在(0,1]上,满足f(x)=$\frac{x^2-x}{2}$,则f(-2016)+f(-2016$\frac{1}{2}$)=(  )
A.0B.$\frac{1}{4}$C.-$\frac{1}{8}$D.$\frac{1}{8}$

分析 根据函数奇偶性和周期性的性质进行求解即可.

解答 解:f(-2016)=f(-2014)=f(-2012)=…=f(0)=0,
$f({-2016\frac{1}{2}})=f({-2014\frac{1}{2}})=f({-2012\frac{1}{2}})=…=f({-\frac{1}{2}})=-f({\frac{1}{2}})=-\frac{{{{({\frac{1}{2}})}^2}-({\frac{1}{2}})}}{2}=\frac{1}{8}$,
所以$f({-2016})+f({-2016\frac{1}{2}})=0+\frac{1}{8}=\frac{1}{8}$.
故选:D.

点评 本题主要考查函数值的计算,根据函数奇偶性和周期性的关系进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知α是第三象限角,且$\frac{sinα+cosα}{sinα-cosα}$=2.
(1)求sinα,cosα的值;
(2)设α-π的终边与单位圆交于点P,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知a=2,A=45°,B=120°,则b=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an}的前n项和为Sn,若a3+a4=5,则S6=(  )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,a≠1且loga3>loga2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.
(1)求a的值;    
(2)求不等式${log_{\frac{1}{3}}}(x-1)>{log_{\frac{1}{3}}}$(a-x)的解集;
(3)设方程${log_{2a}}x={(\frac{1}{2a})^x}\;,\;{log_{\frac{1}{2a}}}x={(\frac{1}{2a})^x}$的根分别为x1,x2,求x1x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0),点P的坐标为(x0,y0).
(1)如P(x0,y0)为椭圆C内一点,直线L与C相交于A,B两点,且P(x0,y0)为线段AB的中点,求直线L方程;
(2)如P(x0,y0)为椭圆C上一点,求过P点的切线方程,并比较此方程与(1)问中直线L方程的表达式有何关系;
(3)如P(x0,y0)为椭圆外一点,过点P作椭圆C的两条切线,切点分别为A,B,求过A,B的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.方程y=k(x-1)表示(  )
A.过点(-1,0)的所有直线B.过点(1,0)的所有直线
C.过点(1,0)且不垂直于x轴的所有直线D.过点(1,0)且除去x轴的所有直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={1,4,x},B={1,x2},且B⊆A,则满足条件的实数x有(  )
A.1 个B.2 个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.据气象中心观察和预测:发生于 地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t的函数图象如图所示,过线段OC 上一点T(t,0)作横轴的垂线l,梯形OABC在直线l 左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).
(1)求速度v 关于时间t 的函数解析式;
(2)求路程s 关于时间t 的函数解析式.

查看答案和解析>>

同步练习册答案