精英家教网 > 高中数学 > 题目详情

【题目】点O是平面上一定点,A、B、C是平面上△ABC的三个顶点,∠B、∠C分别是边AC、AB的对角,以下命题正确的是(把你认为正确的序号全部写上). ①动点P满足 = + + ,则△ABC的重心一定在满足条件的P点集合中;
②动点P满足 = +λ( + )(λ>0),则△ABC的内心一定在满足条件的P点集合中;
③动点P满足 = +λ( + )(λ>0),则△ABC的重心一定在满足条件的P点集合中;
④动点P满足 = +λ( + )(λ>0),则△ABC的垂心一定在满足条件的P点集合中;
⑤动点P满足 = +λ( + )(λ>0),则△ABC的外心一定在满足条件的P点集合中.

【答案】①②③④⑤
【解析】解:对于①,∵动点P满足 = + + , ∴ = +
则点P是△ABC的重心,故①正确;
对于②,∵动点P满足 = +λ( + )(λ>0),
=λ( + )(λ>0),
+ 在∠BAC的平分线上,
与∠BAC的平分线所在向量共线,
∴△ABC的内心在满足条件的P点集合中,②正确;
对于③,动点P满足 = +λ( + )(λ>0),
=λ( + ),(λ>0),
过点A作AD⊥BC,垂足为D,则| |sinB=| |sinC=AD,
= + ),向量 + 与BC边的中线共线,
因此△ABC的重心一定在满足条件的P点集合中,③正确;
对于④,动点P满足 = +λ( + )(λ>0),
=λ( + )(λ>0),
=λ( + =λ(| |﹣| |)=0,

∴△ABC的垂心一定在满足条件的P点集合中,④正确;
对于⑤,动点P满足 = +λ( + )(λ>0),
=
=λ( + ),
由④知( + =0,
=0,

∴P点的轨迹为过E的BC的垂线,即BC的中垂线;
∴△ABC的外心一定在满足条件的P点集合,⑤正确.
故正确的命题是①②③④⑤.
所以答案是:①②③④⑤.
【考点精析】根据题目的已知条件,利用命题的真假判断与应用的相关知识可以得到问题的答案,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2﹣ax+1>0对x∈R恒成立,若p且q为假,p或q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(2x+ )+ cos(2x+ ),则(
A.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
B.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
C.y=f(x)在(0, )单调递减,其图象关于直线x= 对称
D.y=f(x)在(0, )单调递减,其图象关于直线x= 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC是一个面积较大的三角形,点P是△ABC所在平面内一点且 + +2 = ,现将3000粒黄豆随机抛在△ABC内,则落在△PBC内的黄豆数大约是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD中,PD⊥平面ABCD,BC⊥CD,PD=1,AB= ,BC=CD= ,AD=1.
(1)求异面直线AB、PC所成角的余弦值;
(2)点E是线段AB的中点,求二面角E﹣PC﹣D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,D、E分别是△ABC的三等分点,设 = = ,∠BAC=
(1)用 分别表示
(2)若 =15,| |=3 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,为测一树的高度,在地面上选取A、B两点,从A、B两点分别测得树尖的仰角为30°、45°,且A、B两点之间的距离为60m,则树的高度为(
A.(30+30 ) m
B.(30+15 ) m??
C.(15+30 ) m
D.(15+15 ) m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知B=45°,D是BC上一点,AD=5,AC=7,DC=3,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中真命题为(
A.过点P(x0 , y0)的直线都可表示为y﹣y0=k(x﹣x0
B.过两点(x1 , y1),(x2 , y2)的直线都可表示为(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1
C.过点(0,b)的所有直线都可表示为y=kx+b
D.不过原点的所有直线都可表示为

查看答案和解析>>

同步练习册答案