精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)的定义域为D={x|x≠0},且满足对于任意x1x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判断f(x)的奇偶性并证明你的结论;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.

【答案】(1) f(1)=0;(2)见解析.(3){x|-15<x<17且x≠1}.

【解析】试题分析:(1)抽象函数求具体指,用赋值法;(2)根据定义求证函数的奇偶性找f(-x)f(x)的关系;(3)先利用f(4×4)=f(4)+f(4)=2得到f(x-1)<2f(|x-1|)<f(16).再根据单调性列出不等式求解即可.

(1)∵对于任意x1x2D,有f(x1·x2)=f(x1)+f(x2),

∴令x1x2=1,得f(1)=2f(1),∴f(1)=0.

(2)令x1x2=-1,有f(1)=f(-1)+f(-1),∴f(-1)=f(1)=0.

x1=-1,x2xf(-x)=f(-1)+f(x),∴f(-x)=f(x),∴f(x)为偶函数.

(3)依题设有f(4×4)=f(4)+f(4)=2,

由(2)知,f(x)是偶函数,∴f(x-1)<2f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.∴0<|x-1|<16,解之得-15<x<17且x≠1.

x的取值范围是{x|-15<x<17且x≠1}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,若对任意的正实数,总存在,使得,则实数的取值范围为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中是实数.

(l)若 ,求函数的单调区间;

(2)当时,若为函数图像上一点,且直线相切于点,其中为坐标原点,求的值

(3) 设定义在上的函数在点处的切线方程为在定义域内恒成立,则称函数具有某种性质,简称“函数”.当时,试问函数是否为“函数”?若是,请求出此时切点的横坐标;若不是,清说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)求在区间上零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),恒有f(kx)=kf(x),(k≥2,k∈N+)成立,则称f(x)为k阶缩放函数.
(1)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)=1+ x,求f(2 )的值;
(2)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)= ,求证:函数y=f(x)﹣x在(1,+∞)上无零点;
(3)已知函数f(x)为k阶缩放函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的前项和为 对每个正整数之间插入3,得到一个新的数列.

1)求数列的通项公式;

(2)求数列的前项和为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球.

(1)从甲袋中任取两球,求取出的两球颜色不相同的概率;

(2)从甲,乙两袋中各取一球,求取出的两球颜色相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数定义域为,若对于任意的,都有,且时,有.

(1)判断并证明函数的奇偶性;

(2)判断并证明函数的单调性;

(3)设,若,对所有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x与相应的生产能耗y的几组对照数据

x

3

4

5

6

y

2.5

3

4

4.5

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.(其中).

查看答案和解析>>

同步练习册答案