ÒÑÖªº¯Êýf£¨x£©=£¨ÆäÖÐaΪ³£Êý£¬x¡Ùa£©£®ÀûÓú¯Êýy=f£¨x£©¹¹ÔìÒ»¸öÊýÁÐ{xn}£¬·½·¨ÈçÏ£º
¶ÔÓÚ¸ø¶¨µÄ¶¨ÒåÓòÖеÄx1£¬Áîx2=f£¨x1£©£¬x3=f£¨x2£©£¬¡­£¬xn=f£¨xn-1£©£¬¡­
ÔÚÉÏÊö¹¹Ôì¹ý³ÌÖУ¬Èç¹ûxi£¨i=1£¬2£¬3£¬¡­£©ÔÚ¶¨ÒåÓòÖУ¬ÄÇô¹¹ÔìÊýÁеĹý³Ì¼ÌÐøÏÂÈ¥£»Èç¹ûxi²»ÔÚ¶¨ÒåÓòÖУ¬ÄÇô¹¹ÔìÊýÁеĹý³Ì¾ÍÍ£Ö¹£®
£¨¢ñ£©µ±a=1ÇÒx1=-1ʱ£¬ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨¢ò£©Èç¹û¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸ö³£ÊýÁУ¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃÈ¡¶¨ÒåÓòÖеÄÈÎһʵÊýÖµ×÷Ϊx1£¬¶¼¿ÉÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¿Èô´æÔÚ£¬Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨¢ñ£©µ±a=1ʱ£¬£¬ËùÒÔ£¬£®Á½±ßÈ¡µ¹Êý£¬µÃ£¬ÓɵȲîÊýÁж¨ÒåÇó½â£®
£¨¢ò£©¹¹Ôì³öÒ»¸ö³£ÊýÁУ¬¼´£ºµ±x¡Ùaʱ£¬·½³Ìf£¨x£©=xÓн⣬¼´·½³Ìx2+£¨1-a£©x+1-a=0Óв»µÈÓÚaµÄ½â£®ÓÉ¡÷=£¨1-a£©2-4£¨1-a£©¡Ý0Çó½â£®
£¨¢ó£©ÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¬¼´£º=aÔÚRÖÐÎ޽⣮¼´µ±x¡Ùaʱ£¬·½³Ì£¨1+a£©x=a2+a-1ÎÞʵÊý½â£®ÔòÓÐÇó½â£¬ÓнâÔò´æÔÚ£¬ÎÞ½âÔò²»´æÔÚ£®
½â´ð£º½â£º£¨¢ñ£©µ±a=1ʱ£¬f£¨x£©=£¬
ËùÒÔ£¬xn+1=£®
Á½±ßÈ¡µ¹Êý£¬µÃ-1£¬
¼´=-1£®ÓÖ=-1£¬
ËùÒÔÊýÁÐ{}ÊÇÊ×ÏîΪ-1£¬¹«²îd=-1µÄµÈ²îÊýÁУ®£¨3·Ö£©
¹Ê=-1+£¨n-1£©•£¨-1£©=-n£¬
ËùÒÔxn=-£¬
¼´ÊýÁÐ{xn}µÄͨÏʽΪxn=-£¬n¡ÊN*£®£¨4·Ö£©
£¨¢ò£©¸ù¾ÝÌâÒ⣬ֻÐèµ±x¡Ùaʱ£¬·½³Ìf£¨x£©=xÓн⣬£¨5·Ö£©
¼´·½³Ìx2+£¨1-a£©x+1-a=0Óв»µÈÓÚaµÄ½â£®
½«x=a´úÈë·½³Ì×ó±ß£¬×ó±ßΪ1£¬ÓëÓұ߲»ÏàµÈ£®
¹Ê·½³Ì²»¿ÉÄÜÓнâx=a£®£¨7·Ö£©
ÓÉ¡÷=£¨1-a£©2-4£¨1-a£©¡Ý0£¬µÃa¡Ü-3»òa¡Ý1£®
¼´ÊµÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬-3]¡È[1£¬+¡Þ£©£®£¨10·Ö£©
£¨¢ó£©¼ÙÉè´æÔÚʵÊýa£¬Ê¹µÃÈ¡¶¨ÒåÓòÖеÄÈÎһʵÊýÖµ×÷Ϊx1£¬¶¼¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{xn}£¬ÄÇô¸ù¾ÝÌâÒâ¿ÉÖª£¬=aÔÚRÖÐÎ޽⣬£¨12·Ö£©
¼´µ±x¡Ùaʱ£¬·½³Ì£¨1+a£©x=a2+a-1ÎÞʵÊý½â£®
ÓÉÓÚx=a²»ÊÇ·½³Ì£¨1+a£©x=a2+a-1µÄ½â£¬
ËùÒÔ¶ÔÓÚÈÎÒâx¡ÊR£¬·½³Ì£¨1+a£©x=a2+a-1ÎÞʵÊý½â£¬
Òò´Ë½âµÃa=-1£®
¹Êa=-1¼´ÎªËùÇóaµÄÖµ£®£¨14·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýÓëÊýÁеÄ×ÛºÏÔËÓã¬Ö÷ÒªÉæ¼°Á˵ȲîÊýÁеĶ¨Ò壬ͨÏîÊýÁеĴæÔÚÐÔÓë·½³ÌÓÐÎÞ¸ùµÄ¹Øϵ£®ÊôÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=sinxcos¦Õ+cosxsin¦Õ£¨ÆäÖÐx¡ÊR£¬0£¼¦Õ£¼¦Ð£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©Èôº¯Êýy=f(2x+
¦Ð
4
)
µÄͼÏó¹ØÓÚÖ±Ïßx=
¦Ð
6
¶Ô³Æ£¬Çó¦ÕµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©Îª¶¨ÒåÔÚRÉϵÄÆ溯Êý£¬ÇÒµ±x£¾0ʱ£¬f£¨x£©=£¨sinx+cosx£©2+2cos2x£¬
£¨1£©Çóx£¼0£¬Ê±f£¨x£©µÄ±í´ïʽ£»
£¨2£©Èô¹ØÓÚxµÄ·½³Ìf£¨x£©-a=oÓн⣬ÇóʵÊýaµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=aInx-ax£¬£¨a¡ÊR£©
£¨1£©Çóf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»£¨ÎĿƿɲο¼¹«Ê½£º(Inx)¡ä=
1
x
£©
£¨2£©Èôf¡ä£¨2£©=1£¬¼Çº¯Êýg£¨x£©=x3+x2[f¡ä(x)+
m
2
]
£¬Èôg£¨x£©ÔÚÇø¼ä£¨1£¬3£©ÉÏ×ܲ»µ¥µ÷£¬ÇóʵÊýmµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x2-bxµÄͼÏóÔÚµãA£¨1£¬f£¨1£©£©´¦µÄÇÐÏßlÓëÖ±Ïß3x-y+2=0ƽÐУ¬ÈôÊýÁÐ{
1
f(n)
}
µÄÇ°nÏîºÍΪSn£¬ÔòS2010µÄֵΪ£¨¡¡¡¡£©
A¡¢
2011
2012
B¡¢
2010
2011
C¡¢
2009
2010
D¡¢
2008
2009

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚÇø¼ä£¨-1£¬1£©ÉϵÄÆ溯Êý£¬ÇÒ¶ÔÓÚx¡Ê£¨-1£¬1£©ºãÓÐf¡¯£¨x£©£¼0³ÉÁ¢£¬Èôf£¨-2a2+2£©+f£¨a2+2a+1£©£¼0£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸