精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=x3+ax2+(2a-3)x-1.
(1)若f(x)的单调减区间为(-1,1),则a的取值集合为0;
(2)若f(x)在区间(-1,1)内单凋递减,则a的取值集合为[0,3).

分析 (1)求导f′(x)=3x2+2ax+(2a-3)=(3x+2a-3)(x+1),从而确定a;
(2)由题意得-1≤$\frac{2a-3}{3}$<1,从而解得.

解答 解:(1)∵f(x)=x3+ax2+(2a-3)x-1,
∴f′(x)=3x2+2ax+(2a-3)=(3x+2a-3)(x+1),
∵f(x)的单调减区间为(-1,1),
∴$\frac{2a-3}{3}$=-1,解得,a=0;
(2)由(1)知,f′(x)=(3x+2a-3)(x+1),
故-1≤$\frac{2a-3}{3}$<1,
故0≤a<3;
故答案为:0,[0,3).

点评 本题考查了导数的综合应用及因式分解的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.双曲线C;$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0))的左右焦点分别为F1,F2,双曲线C上一点P到右焦点F2的距离是实轴两端点到右焦点距离的等差中项,若△PF1F2为锐角三角形,则双曲线C的离心率的取值范围是(  )
A.($\frac{1+\sqrt{5}}{2}$,+∞)B.(1,1+$\sqrt{3}$)C.($\frac{1+\sqrt{5}}{2}$,1+$\sqrt{3}$)D.($\frac{1+\sqrt{5}}{2}$,2)∪(2,1+$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{a}$=(5,6),$\overrightarrow{b}$=(sinα,cosα),已知向量且$\overrightarrow{a}$∥$\overrightarrow{b}$,则tanα=(  )
A.$\frac{5}{6}$B.-$\frac{5}{6}$C.$\frac{6}{5}$D.-$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)是定义在R上的奇函数,且它是减函数,若实数a,b满足f(a)+f(b)>0,则a与b的关系是(  )
A.a+b>0B.a+b<0C.a+b=0D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设${a_n}={n^2}-2kn+6$(n∈N*,k∈R)
(1)证明:k≤1是{an}为递增数列的充分不必要条件;
(2)若$?n∈{N^*},\frac{a_n}{n}≥1$,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.△ABC中,∠A=90°,BC=2,点A是线段EF中点,EF=2,则$\overrightarrow{EF}$与$\overrightarrow{BC}$的夹角为45°,则$\overrightarrow{BE}•\overrightarrow{CF}$=$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.同学们经过市场调查,得出了某种商品在2014年的价格y(单位:元)与时间t(单位:月的函数关系为:y=2+$\frac{{t}^{2}}{20-t}$(1≤t≤12),则10月份该商品价格上涨的速度是3元/月.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(1)市场上某电脑键盘的单价为16元,当购买5个以内(含5个)键盘时,则应付款y(元)与购置数且x(个)的函数解析式为y=16x(0<x≤5,x∈N+).
(2)某商店已按每件80元的成本购进某商品1000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元,销售量就减少5件,若设售价提高x元,则获得利润y元关于x的函数关系式为y=-5x2+500x+20000(0≤x≤200,x∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.甲、乙两人在相同条件下各射击10次,每次命中的环数如下:
86786591047
6778678795
(1)分别计算以上两组数据的平均数;
(2)分别计算以上两组数据的方差;
(3)根据计算结果,对甲乙两人的射击成绩作出评价.
( 参考公式:${s}^{2}=\frac{1}{n}$[${(x}_{1}-\overline{x})^{2}$+$({x}_{2}-\overline{x})^{2}$+…+$({x}_{n}-\overline{x})^{2}$])

查看答案和解析>>

同步练习册答案