精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,点A在l上的射影为A1 . 若|AB|=|A1B|,则直线AB的斜率为(
A.±3
B.±2
C.±2
D.±

【答案】B
【解析】解:设A在第一象限,直线AB的倾斜角为α. 过B作准线的垂线BB′,作AA′的垂线BC,
∵|AB|=|A1B|,∴C是AA′的中点.
设|BB′|=a,则|AA′|=2a,∴|AB|=|AA′|+|BB′|=3a.
∴cosα=cos∠BAC= =
∴tanα=2
由抛物线的对称性可知当A在第四象限时,tanα=﹣2
∴直线AB的斜率为±2
故选:B.

设A,B到准线的距离分别为2a,a,由抛物线的定义可得|AB|=3a,利用锐角三角函数的定义即可得出直线AB的斜率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某人第一天8:00从A地开车出发,6小时后到达B地,第二天8:00从B地出发,沿原路6小时后返回A地.则在此过程中,以下说法中 ①一定存在某个位置E,两天经过此地的时刻相同
②一定存在某个时刻,两天中在此刻的速度相同
③一定存在某一段路程EF(不含A、B),两天在此段内的平均速度相同.(以上速度不考虑方向)
正确说法的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C1的中心在原点O,长轴左、右端点M、N在x轴上,椭圆C2的短轴为MN,且C1、C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点纵坐标从大到小依次为A、B、C、D.

(1)设 ,求|BC|与|AD|的比值;
(2)若存在直线l,使得BO∥AN,求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赌博有陷阱.某种赌博游戏每局的规则是:参与者现在从标有5、6、7、8、9的相同小球中随机摸取一个,将小球上的数字作为其赌金(单位:元);随后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其资金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与资金,则Eξ﹣Eη=(元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)设max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosB=bcosA.
(1)判断△ABC的形状;
(2)求sin(2A+ )﹣2cos2B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为(
A.
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1, = + (n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=1+a (n∈N*),求数列{2nbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列,若sinB= ,cosB= ,则a+c的值为

查看答案和解析>>

同步练习册答案