精英家教网 > 高中数学 > 题目详情
(13分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.
(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.
(1) ;
(2) ;(3) 的最小值为 
本试题主要是考查了立体几何中二面角的求解和棱台体积公式的运用,以及线段和的最值问题的综合运用。
(1)首先要求解三棱台的体积,关键是高度和底面积,然后结合公式得到。
(2)建立适当的空间直角坐标系,表示出点的坐标和向量的坐标,进而求解二面角的平面角的问题。
(3)结合三角形的知识,求解两边的和的最小值,要借助于余弦定理得到。
解:(1)由题意,正三棱台高为……..2分
………..4分
(2)设分别是上下底面的中心,中点,中点.
如图,建立空间直角坐标系.

设平面的一个法向量,则
,取平面的一个法向
,设所求角为
……..8分
(3)将梯形旋转到,使其与成平角

,由余弦定理得
的最小值为 ……..13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图5,已知直角梯形所在的平面垂直于平面

.  
(1)在直线上是否存在一点,使得
平面?请证明你的结论;
(2)求平面与平面所成的锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示, 四棱锥PABCD的底面是边长为1的正方形,PA^CDPA = 1, PD=,EPD上一点,PE = 2ED

(Ⅰ)求证:PA^平面ABCD
(Ⅱ)求二面角D-ACE的余弦值;
(Ⅲ)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱椎P-ABCD中,底面ABCD是边长为的正方形,且PD=,PA=PC=.

(1)求证:直线PD⊥面ABCD;
(2)求二面角A-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图,简单组合体ABCDPE,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)若N为线段PB的中点,求证:EN⊥平面PDB;
(2)若,求平面PBE与平面ABCD所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的七面体是由三棱台ABC – A1B1C1和四棱锥D- AA1C1C对接而成,四边形ABCD是边长为2的正方形,BB1⊥平面ABCD,BB1=2A1B1=2.

(I)求证:平面AA1C1C1⊥平面BB1D;
(Ⅱ)求二面角A –A1D—C1的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的直径,点上的动点(点不与重合),过动点的直线垂直于所在的平面,分别是的中点,则下列结论错误的是  
A.直线平面B.直线平面
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线a∥平面α,直线b在平面α内,则a与b的位置关系为                          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分10分)如图4,在长方体中,,点在棱上移动,问等于何值时,二面角的大小为

查看答案和解析>>

同步练习册答案