精英家教网 > 高中数学 > 题目详情
如图,在四边形中,对角线,的重心,过点的直线分别交,沿折起,沿折起,正好重合于.

(Ⅰ) 求证:平面平面
(Ⅱ)求平面与平面夹角的大小.
(1)对于面面垂直的证明,主要是通过判定定理来分析得到,注意到平面是解题的关键。
(2)

试题分析:解:(Ⅰ) 由题知:       
        
    又 平面
平面  平面平面       6分
(Ⅱ) 如图建立空间直角坐标系



 平面
 平面的一个法向量为  8分
    
设平面的一个法向量为
     
      
 平面与平面的夹角为   12分
点评:对于空间中的垂直的证明主要是熟练的运用判定定理和性质定理来证明,同时二面角的求解,一般采用向量法来得到,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

是两条不同的直线,是两个不同的平面,则下列正确命题的序号
     
①.若  , 则   ;      ②.若,则   
③. 若  ,则   ;      ④.若   ,,则  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在直棱柱ABC—A1B1C1中,AC=BC=2,∠ACB=90º,AA1=2,E,F分别为AB、CB中点,过直线EF作棱柱的截面,若截面与平面ABC所成的二面角的大小为60º,则截面的面积为(    ).

A.3或1    B.1    C.4或1    D.3或4  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从正方体的八个顶点中任取四个点连线,在能构成的一对异面直线中,其所成的角的度数不可能是
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求多面体EF-ABCD的体积;
(Ⅱ)求直线BD与平面BCF所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面


(1)若E是PC的中点,证明:平面
(2)试在线段PC上确定一点E,使二面角P- AB- E的大小为,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在直棱柱中,当底面四边形满足      时,有成立.(填上你认为正确的一个条件即可)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两个平面,为两条直线,且,有如下两个命题:
①若;②若. 那么( )
A.①是真命题,②是假命题B.①是假命题,②是真命题
C.①、②都是真命题D.①、②都是假命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在长方体中,分别是面,面的中心,则所成的角为(    )
A.  B.    C.D.

查看答案和解析>>

同步练习册答案