精英家教网 > 高中数学 > 题目详情
13.若椭圆的左焦点为F,上顶点为B,右顶点为A,当FB⊥AB时,其离心率为$\frac{{\sqrt{5}-1}}{2}$,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\sqrt{5}-1$D.$\sqrt{5}+1$

分析 根据题意,由AB⊥BF可得$\frac{AO}{OB}=\frac{OB}{OF}$,易得b2=ac,化简可得即c2-a2=ac,可以变形为e2-e=1,结合e>1解可得答案.

解答 解:在Rt△ABF中,由AB⊥BF可得$\frac{AO}{OB}=\frac{OB}{OF}$,
则b2=ac,
即c2-a2=ac,
可得e2-e=1,
又由e>1,
则e=$\frac{\sqrt{5}+1}{2}$
故选

点评 本题考查双曲线的简单几何性质,解题的关键是根据直角三角形的性质得到$\frac{AO}{OB}=\frac{OB}{OF}$,进而得到b2=ac.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若复数z满足$\frac{1+2i}{z}$=1-i,则复数z在复平面对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:

女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数2040805010
男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数4575906030
(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是(  )
A.$\frac{{(\sqrt{5}-1)π}}{2}+2$B.$\frac{{(\sqrt{5}+1)π}}{2}+2$C.$\frac{π}{2}+3$D.$\frac{{\sqrt{5}}}{2}π+2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\left\{\begin{array}{l}lnx({x>0})\\-\sqrt{-x}({x≤0})\end{array}$与g(x)=|x+a|+1的图象上存在关于y轴对称的点,则实数a的取值范围是(  )
A.RB.(-∞,-e]C.[e,+∞)D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设双曲线Γ的方程为x2-$\frac{{y}^{2}}{3}$=1,过其右焦点F且斜率不为零的直线l1与双曲线交于A、B两点,直线l2的方程为x=t,A、B在直线l2上的射影分别为C、D.
(1)当l1垂直于x轴,t=-2时,求四边形ABDC的面积;
(2)当t=0,l1的斜率为正实数,A在第一象限,B在第四象限时,试比较$\frac{|AC|•|FB|}{|BD|•|FA|}$和1的大小,并说明理由;
(3)是否存在实数t∈(-1,1),使得对满足题意的任意直线l1,直线AD和直线BC的交点总在x轴上,若存在,求出所有的t的值和此时直线AD与BC交点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期为π,其图象关于直线x=$\frac{π}{3}$对称,则|φ|的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:若a>|b|,则a2>b2;命题q:若x2=4,则x=2,.下列说法正确的是(  )
A.“p∨q”为假命题B.“p∧q”为假命题C.“¬p”为真命题D.“¬q”为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-1≤x<3},B={x∈Z|x2<4},则A∩B=(  )
A.{0,1}B.{-1,0,1,2}C.{-1,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

同步练习册答案