6£®Ä³»ù½¨¹«Ë¾Äê³õÒÔ100ÍòÔª¹º½øÒ»Á¾ÍÚ¾ò»ú£¬ÒÔÿÄê22ÍòÔªµÄ¼Û¸ñ³ö×â¸ø¹¤³Ì¶Ó£®»ù½¨¹«Ë¾¸ºÔðÍÚ¾ò»úµÄά»¤£¬µÚÒ»Äêά»¤·ÑΪ2ÍòÔª£¬Ëæ×Å»úÆ÷Ä¥Ëð£¬ÒÔºóÿÄêµÄά»¤·Ñ±ÈÉÏÒ»Äê¶à2ÍòÔª£¬Í¬Ê±¸Ã»úÆ÷µÚx£¨x¡ÊN*£¬x¡Ü16£©ÄêÄ©¿ÉÒÔÒÔ£¨80-5x£©ÍòÔªµÄ¼Û¸ñ³öÊÛ£®
£¨1£©Ð´³ö»ù½¨¹«Ë¾µ½µÚxÄêÄ©ËùµÃ×ÜÀûÈóy£¨ÍòÔª£©¹ØÓÚx£¨Ä꣩µÄº¯Êý½âÎöʽ£¬²¢ÇóÆä×î´óÖµ£»
£¨2£©ÎªÊ¹¾­¼ÃЧÒæ×î´ó»¯£¬¼´Äêƽ¾ùÀûÈó×î´ó£¬»ù½¨¹«Ë¾Ó¦ÔÚµÚ¼¸ÄêÄ©³öÊÛÍÚ¾ò»ú£¿ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ×ÜÀûÈóyµÈÓÚ×ÜÊÕÈë¼õÈ¥×ܳɱ¾£¨¹Ì¶¨×ʲú¼ÓÉÏά»¤·Ñ£©£¬½áºÏ¶þ´Îº¯ÊýµÄ×îÖµÇ󷨣¬¼´¿ÉµÃµ½×î´óÖµ£»
£¨2£©ÇóµÃÄêƽ¾ùÀûÈóΪ$\frac{y}{x}$£¬ÔÙÓÉ»ù±¾²»µÈʽ£¬½áºÏxΪÕýÕûÊý£¬¼ÓÉϼ´¿ÉµÃµ½×î´óÖµ£¬¼°¶ÔÓ¦µÄxµÄÖµ£®

½â´ð ½â£º£¨1£©y=22x+£¨80-5x£©-100-£¨2+4+¡­+2x£©=-20+17x-$\frac{1}{2}$x£¨2+2x£©
=-x2+16x-20=-£¨x-8£©2+44£¨x¡Ü16£¬x¡ÊN£©£¬
Óɶþ´Îº¯ÊýµÄÐÔÖʿɵ㬵±x=8ʱ£¬ymax=44£¬
¼´ÓÐ×ÜÀûÈóµÄ×î´óֵΪ44ÍòÔª£»
£¨2£©Äêƽ¾ùÀûÈóΪ$\frac{y}{x}$=16-£¨x+$\frac{20}{x}$£©£¬Éèf£¨x£©=16-£¨x+$\frac{20}{x}$£©£¬x£¾0£¬
ÓÉx+$\frac{20}{x}$¡Ý2$\sqrt{x•\frac{20}{x}}$=4$\sqrt{5}$£¬µ±x=2$\sqrt{5}$ʱ£¬È¡µÃµÈºÅ£®
ÓÉÓÚxΪÕûÊý£¬ÇÒ4£¼2$\sqrt{5}$£¼5£¬f£¨4£©=16-£¨4+5£©=7£¬f£¨5£©=7£¬
¼´ÓÐx=4»ò5ʱ£¬f£¨x£©È¡µÃ×î´óÖµ£¬ÇÒΪ7ÍòÔª£®
¹ÊʹµÃÄêƽ¾ùÀûÈó×î´ó£¬»ù½¨¹«Ë¾Ó¦ÔÚµÚ4»ò5ÄêÄ©³öÊÛÍÚ¾ò»ú£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯ÊýµÄÄ£Ð͵ÄÔËÓ㬿¼²é×îÖµµÄÇ󷨣¬×¢ÒâÔËÓõ¥µ÷ÐԺͻù±¾²»µÈʽ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªÇòOµÄÌå»ýΪ36¦Ð£¬ÔòÇòµÄÄÚ½ÓÕý·½ÌåµÄÀⳤÊÇ$2\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{|x-1|}-1£¬x¡Ý0}\\{{x}^{2}+2x+1£¬x£¼0}\end{array}\right.$£¬Èôf2£¨x£©-£¨3a-1£©f£¨x£©+a2=0ÓÐ5¸ö²»Í¬µÄʵÊý½â£¬Ôòa=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÉèÃüÌâp£º¡°?x£¾1£¬x2¡Ýx£¬ÔòÆä·ñ¶¨·ÇpΪ£¨¡¡¡¡£©
A£®?x£¾1£¬x2¡ÜxB£®$?{x}_{0}£¾1£¬{x}_{0}^{2}£¾{x}_{0}$
C£®$?{x}_{0}¡Ü1£¬{x}_{0}^{2}¡Ü{x}_{0}$D£®$?{x}_{0}£¾1£¬{x}_{0}^{2}£¼{x}_{0}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖª£¨x£¬y£©Âú×ã²»µÈʽ×é$\left\{\begin{array}{l}x+y-2¡Ý0\\ x-y¡Ý0\\ 2x-y-4¡Ü0\end{array}\right.$Ôò$\frac{y}{x+1}$µÄÈ¡Öµ·¶Î§ÊÇ$[0£¬\frac{4}{5}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=3x+k•3-xΪÆ溯Êý£®
£¨1£©ÇóʵÊýkµÄÖµ£»
£¨2£©Èô¹ØÓÚxµÄ²»µÈʽf£¨9${\;}^{a{x}^{2}-2x}$-1£©+f£¨1-3ax-2£©£¼0Ö»ÓÐÒ»¸öÕûÊý½â£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®º¯Êýf£¨x£©=1n£¨2-x£©-$\frac{1}{x}$µÄµ¥µ÷Çø¼äÊǺ¯Êýf£¨x£©ÔÚ£¨-¡Þ£¬-2£©£¬£¨1£¬2£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨-2£¬0£©£¬£¨0£¬1£©Éϵ¥µ÷µÝ¼õ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª¡÷ABCÈýµãA£¨-3£¬4£©£¬B£¨1£¬2£©£¬C£¨5£¬-2£©£®Çó¸ÃÈý½ÇÐÎÈýÌõÖÐÏßËùÔÚÖ±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=x2+4x+2£¬g£¨x£©=2ex£¨x+1£©£¬Èôx¡Ý-2ʱ£¬f£¨x£©¡Ükg£¨x£©£¬ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸