精英家教网 > 高中数学 > 题目详情
11.若函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数的单调增区间为[16k-6,16k+2],k∈Z.

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的单调性,求得函数的单调增区间.

解答 解:由函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象,可得A=$\sqrt{2}$,
$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=2+2,求得ω=$\frac{π}{8}$,再根据五点法作图可得$\frac{π}{8}$•2+φ=$\frac{π}{2}$,∴φ=$\frac{π}{4}$,
∴f(x)=$\sqrt{2}$sin($\frac{π}{8}$x+$\frac{π}{4}$).
令2kπ-$\frac{π}{2}$≤$\frac{π}{8}$x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得16k-6≤x≤16k+2,
可得函数的增区间为[16k-6,16k+2],k∈Z,
故答案为:[16k-6,16k+2],k∈Z.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列命题正确的是(  )
A.“a2>9”是“a>3”的充分不必要条件
B.函数f(x)=x2-x-6的零点是(3,0)或(-2,0)
C.对于命题p:?x∈R,使得x2-x-6>0,则¬p:?x∈R,均有x2-x-6≤0
D.命题“若x2-x-6=0,则x=3”的否命题为“若x2-x-6=0,则x≠3”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点M(2,1)的直线l与x轴、y轴分别交于P、Q两点,O为原点,且S△OPQ=4,则符合条件的直线l有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a1=3,an=2an-1+(t+1)•2n+3m+t(t,m∈R,n≥2,n∈N*
(1)t=0,m=0时,求证:$\{\frac{a_n}{2^n}\}$是等差数列;
(2)t=-1,m=$\frac{4}{3}时,求证:\{{a_n}+3\}$是等比数列;
(3)t=0,m=1时,求数列{an}的通项公式和前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(Ⅰ)求该几何体的体积V;  
(Ⅱ)求该几何体的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列不等式的解集.
(1)$\frac{2x}{x+1}<1$         
(2)x2+(2-a)x-2a≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线过点(2,0)与(0,-3),则该直线的方程为$\frac{x}{2}+\frac{y}{-3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆$E:\frac{x^2}{4}+\frac{y^2}{2}=1$,直线l交椭圆于A,B两点,若线段AB的中点坐标为$({\frac{1}{2},-1})$,则直线l的一般方程为2x-8y-9=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,Sn=2an-3n(n∈N*).
(1)证明数列{an+3}是等比数列,求出数列{an}的通项公式;
(2)设bn=$\frac{n}{3}$an,求数列{bn}的前n项和Tn
(3)数列{an}中是否存在三项,它们可以构成等差数列?若存在,求出一组符合条件的项;若不存在,说明理由.

查看答案和解析>>

同步练习册答案