精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系xOy中,将直线l沿x轴正方向平移3个单位,沿y轴正方向平移5个单位,得到直线l1.再将直线l1沿x轴正方向平移1个单位,沿y轴负方向平移2个单位,又与直线l重合.若直线l与直线l1关于点(2,3)对称,则直线l的方程是6x-8y+1=0.

分析 利用直线的平移变换、直线的对称性即可得出.

解答 解:设直线l的方程为:y=kx+b,将直线l沿x轴正方向平移3个单位,沿y轴正方向平移5个单位,得到直线l1:y=k(x-3)+5+b,化为y=kx+b+5-3k,
再将直线l1沿x轴正方向平移1个单位,沿y轴负方向平移2个单位,y=k(x-3-1)+b+5-2,化为y=kx+3-4k+b.
又与直线l重合.
∴b=3-4k+b,解得k=$\frac{3}{4}$.
∴直线l的方程为:y=$\frac{3}{4}$x+b,直线l1为:y=$\frac{3}{4}$x+$\frac{11}{4}$+b,
设直线l上的一点P(m,b+$\frac{3m}{4}$),则点P关于点(2,3)的对称点P′(4-m,6-b-$\frac{3}{4}$m),
∴6-b-$\frac{3}{4}$m=$\frac{3}{4}$(4-m)+b+$\frac{11}{4}$,解得b=$\frac{1}{8}$.
∴直线l的方程是y=$\frac{3}{4}$x+$\frac{1}{8}$,化为:6x-8y+1=0.
故答案为:6x-8y+1=0.

点评 本题考查了垂直平分线的性质、直线的平移变换、直线的对称性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知A,B是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个顶点,若P双曲线上一点,P关于x轴对称点为Q,若直线AP,BQ的斜率分别K1,K2且K1K2=-$\frac{4}{9}$,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{13}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点$(0\;,\;\sqrt{2})$,且满足a+b=3$\sqrt{2}$.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 斜率为$\frac{1}{2}$的直线交椭圆C于两个不同点A,B,点M的坐标为(2,1),设直线MA与MB的斜率分别为k1,k2
①若直线过椭圆C的左顶点,求此时k1,k2的值;
②试探究k1+k2是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=x3+$\frac{3}{2}$x2-6x+c,若x∈[0,2]都有f(x)>2c-$\frac{1}{2}$恒成立,则c的取值范围是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(x+y+z)8的展开式中项x3yz4的系数等于280.(用数值作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设P1和P2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$上的两点,线段P1P2的中点为M,直线P1P2不经过坐标原点O.
(1)若直线P1P2和直线OM的斜率都存在且分别为k1和k2,求证:k1k2=$\frac{b^2}{a^2}$;
(2)若双曲线的焦点分别为${F_1}(-\sqrt{3},0)$、${F_2}(\sqrt{3},0)$,点P1的坐标为(2,1),直线OM的斜率为$\frac{3}{2}$,求由四点P1、F1、P2、F2所围成四边形P1F1P2F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知O为坐标原点,向量$\overrightarrow{OA}$=(3cosx,3sinx),$\overrightarrow{OB}$=(3cosx,sinx),$\overrightarrow{OC}$=($\sqrt{3}$,0),x∈(0,$\frac{π}{2}$).
(1)求证:($\overrightarrow{OA}$-$\overrightarrow{OB}$)⊥$\overrightarrow{OC}$;
(2)若△ABC是等腰三角形,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于数列{an},称$P({a_k})=\frac{1}{k-1}(|{{a_1}-{a_2}}|+|{{a_2}-{a_3}}|+…+|{{a_{k-1}}-{a_k}}|)$(其中k≥2,k∈N)为数列{an}的前k项“波动均值”.若对任意的k≥2,k∈N,都有P(ak+1)<P(ak),则称数列{an}为“趋稳数列”.
(1)若数列1,x,2为“趋稳数列”,求x的取值范围;
(2)若各项均为正数的等比数列{bn}的公比q∈(0,1),求证:{bn}是“趋稳数列”;
(3)已知数列{an}的首项为1,各项均为整数,前k项的和为Sk.且对任意k≥2,k∈N,都有3P(Sk)=2P(ak),试计算:$C_n^2P({a_2})+2C_n^3P({a_3})+…+(n-1)C_n^nP({a_n})$(n≥2,n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知各项都不相等的等差数列{an}的前六项和为60,且a6为a1和a21的等比中项.
(1)求数列{an}的通项公式an及前n项和Sn
(2)若数列{bn}满足bn=n(n+2),求数列{$\frac{1}{b_n}$}的前n项和Tn

查看答案和解析>>

同步练习册答案