精英家教网 > 高中数学 > 题目详情
一束光线从点(0,1)出发,经过直线x+y-2=0反射后,恰好与椭圆x2+
y2
2
=1
相切,则反射光线所在的直线方程为______.
设(0,1)关于x+y-2=0的对称点为(a,b),则
b-1
a-0
=1
a
2
+
b+1
2
-2=0

∴a=1,b=2.
当反射光线斜率不存在时,方程为x=1,满足题意;
当反射光线斜率存在时,设方程为y-2=k(x-1),即y=kx-k+2,
代入椭圆方程,整理可得(2+k2)x2+2k(2-k)x+2-4k+k2=0,
∵反射光线与椭圆x2+
y2
2
=1
相切,
∴△=4k2(2-k)2-4(2+k2)(2-4k+k2)=0,
∴k=
1
2

∴所求方程为x-2y+3=0.
综上,所求方程为x-2y+3=0或x=1.
故答案为:x-2y+3=0或x=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知抛物线x2=2py(p>0)的焦点为F,顶点为O,准线为l,过该抛物线上异于顶点O的任意一点A作AA1⊥l于点A1,以线段AF,AA1为邻边作平行四边形AFCA1,连接直线AC交l于点D,延长AF交抛物线于另一点B.若△AOB的面积为S△AOB,△ABD的面积为S△ABD,则
(S△AOB)2
S△ABD
的最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xoy中,如图,已知椭圆
x2
9
+
y2
5
=1
的左、右顶点为A、B,右焦点为F,设过点T(t,m)的直线TA、TB与此椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0
(1)设动点P满足(
PF
+
PB
)(
PF
-
PB
)=13
,求点P的轨迹方程;
(2)设x1=2,x2=
1
3
,求点T的坐标;
(3)若点T在点P的轨迹上运动,问直线MN是否经过x轴上的一定点,若是,求出定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为
1
2
.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1x+
3
y+3=0
相切.
(Ⅰ)求椭圆的方程:
(Ⅱ)过点A的直线l2与圆M交于PQ两点,且
MP
MQ
=-2
,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点M(-1,0),N(1,0),动点P(x,y)满足:|PM|•|PN|=
4
1+cos∠MPN

(1)求P的轨迹C的方程;
(2)是否存在过点N(1,0)的直线l与曲线C相交于A、B两点,并且曲线C存在点Q,使四边形OAQB为平行四边形?若存在,求出平行四边形OAQB的面积;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(-2,0),B(2,0),M(-1,0),直线PA,PB相交于点P,且它们的斜率之积为-
3
4

(1)求动点P的轨迹方程;
(2)试判断以PB为直径的圆与圆x2+y2=4的位置关系,并说明理由;
(3)直线PM与椭圆的另一个交点为N,求△OPN面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x-3)2+(y-4)2=1.
(Ⅰ)若过点C1(-1,0)的直线l被圆C2截得的弦长为
6
5
,求直线l的方程;
(Ⅱ)圆D是以1为半径,圆心在圆C3:(x+1)2+y2=9上移动的动圆,若圆D上任意一点P分别作圆C1的两条切线PE,PF,切点为E,F,求
C1E
C1F
的取值范围;
(Ⅲ)若动圆C同时平分圆C1的周长、圆C2的周长,则动圆C是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点A、B分别是椭圆
x2
36
+
y2
20
=1
的长轴的左、右端点,F为椭圆的右焦点,直线PF的方程为
3
x+y-3
2
=0
,且PA⊥PF.
(Ⅰ)求直线PA的方程;
(Ⅱ)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点F1(-
3
,0),F2
3
,0),动点R在曲线C上运动且保持|RF1|+|RF2|的值不变,曲线C过点T(0,1),
(Ⅰ)求曲线C的方程;
(Ⅱ)M是曲线C上一点,过点M作斜率分别为k1和k2的直线MA,MB交曲线C于A、B两点,若A、B关于原点对称,求k1•k2的值;
(Ⅲ)直线l过点F2,且与曲线C交于PQ,有如下命题p:“当直线l垂直于x轴时,△F1PQ的面积取得最大值”.判断命题p的真假.若是真命题,请给予证明;若是假命题,请说明理由.

查看答案和解析>>

同步练习册答案