【题目】设a,b是不相等的两个正数,且blna﹣alnb=a﹣b,给出下列结论:①a+b﹣ab>1;②a+b>2;③ + >2.其中所有正确结论的序号是( )
A.①②
B.①③
C.②③
D.①②③
【答案】D
【解析】解:①由blna﹣alnb=a﹣b,得blna+b=alnb+a,即 = ,设f(x)= ,x>0,
则f′(x)=﹣ =,
由f′(x)>0得﹣lnx>0,得lnx<0,得0<x<1,
由f′(x)<0得﹣lnx<0,得lnx>0,得x>1,
即当x=1时,函数f(x)取得极大值,
则 = ,等价为f(a)=f(b),
则a,b一个大于1,一个小于1,
不妨设0<a<1,b>1.
则a+b﹣ab>1等价为(a﹣1)(1﹣b)>0,
∵0<a<1,b>1.∴(a﹣1)(1﹣b)>0,则a+b﹣ab>1成立,故①正确,
②由即 = ,
得 = ,
由对数平均不等式得 = > ,
即lna+lnb>0,即lnab>0,
则ab>1,
由均值不等式得a+b2,故②正确,
③令g(x)=﹣xlnx+x,则g′(x)=﹣lnx,
则由g′(x)>0得﹣lnx>0,得lnx<0,得0<x<1,此时g(x)为增函数,
由g′(x)<0得﹣lnx<0,得lnx>0,得x>1,此时g(x)为减函数,
再令h(x)=g(x)﹣g(2﹣x),0<x<1,
则h′(x)=g′(x)+g′(2﹣x)=﹣lnx﹣lm(2﹣x)=﹣ln[x(2﹣x)]>0,
则h(x)=g(x)﹣g(2﹣x),在0<x<1上为增函数,
则h(x)=g(x)﹣g(2﹣x)<h(1)=0,
则g(x)<g(2﹣x),
即g( )<g(2﹣ ),
∵g( )= ﹣ ln = + lna= = ,
∴g( )=g( )
则g( )=g( )<g(2﹣ ),
∵g(x)在0<x<1上为增函数,
∴ >2﹣ ,
即 + >2.
故③正确,
故选:D
①由blna﹣alnb=a﹣b得 = ,构造函数f(x)= ,x>0,判断a,b的取值范围即可.
②由对数平均不等式进行证明,
③构造函数,判断函数的单调性,进行证明即可.
科目:高中数学 来源: 题型:
【题目】如图,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AB⊥AD,AD=AB=1.AA1=CD=2.E为棱DD1的中点.
(1)证明:B1C1⊥平面BDE;
(2)求二面角D﹣BE﹣C1的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=f'(1)ex﹣1﹣f(0)x+ 的导数,e为自然对数的底数)g(x)= +ax+b(a∈R,b∈R)
(Ⅰ)求f(x)的解析式及极值;
(Ⅱ)若f(x)≥g(x),求 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场进行有奖促销活动,顾客购物每满500元,可选择返回50元现金或参加一次抽奖,抽奖规则如下:从1个装有6个白球、4个红球的箱子中任摸一球,摸到红球就可获得100元现金奖励,假设顾客抽奖的结果相互独立.
(Ⅰ)若顾客选择参加一次抽奖,求他获得100元现金奖励的概率;
(Ⅱ)某顾客已购物1500元,作为商场经理,是希望顾客直接选择返回150元现金,还是选择参加3次抽奖?说明理由;
(Ⅲ)若顾客参加10次抽奖,则最有可能获得多少现金奖励?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方形OABC边长为3,点M,N分别为线段BC,AB上一点,且2BM=MC,AN=NB,P为△BNM内一点(含边界),设 (λ,μ为实数),则 的最大值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)= ,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═ 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是( )
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com