精英家教网 > 高中数学 > 题目详情
满足{1}⊆M⊆{1,2,3,4,5}的集合M的个数为(  )
A、4B、6C、8D、16
考点:集合的包含关系判断及应用
专题:计算题,集合
分析:由题意,满足{1}⊆M⊆{1,2,3,4,5}的集合M的个数可化为{2,3,4,5}的子集个数.
解答: 解:∵{1}⊆M⊆{1,2,3,4,5},
∴2,3,4,5共4个元素可以选择,
即满足{1}⊆M⊆{1,2,3,4,5}的集合M的个数可化为
{2,3,4,5}的子集个数;
故其有16个子集,
故选D.
点评:本题考查了集合间的包含关系及集合的子集个数,若一个集合中有n个元素,则它有2n个子集,有(2n-1)个真子集,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
p
|=4,|
q
|=3,
p
q
的夹角是45°,则
p
q
的值等于(  )
A、-6
2
B、-6
C、6
D、6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号)
(1)存在这样的直线,既不与坐标轴平行又不经过任何整点
(2)如果k与b都是无理数,则直线y=kx+b不经过任何整点
(3)直线l经过无穷多个整点,当且仅当l经过两个不同的整点
(4)存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(2x+φ)(|φ|<
π
2
)向左平移
π
6
个单位后是奇函数,则函数f(x)在[0,
π
2
]上的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

推理过程“大前提:□,小前提:四边形ABCD是矩形,结论:四边形ABCD的对角线相等.”应补充的大前提是(  )
A、矩形的对角线相等
B、等腰梯形的对角线相等
C、正方形的对角线相等
D、矩形的对边平行且相等

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=esinx+cosx-
1
2
sin2x(x∈R),则函数f(x)的最大值与最小值的差是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线ax2+by2=12的两条动弦MA,MB所在直线的斜率分别为k1,k2
(1)已知a=b=3且A(-2,0),B(2,0),试证明:k1k2为定值.
(2)已知a=3,b=4.
①若A(-2,0),B(2,0),试判断k1k2是否为定值?若是,求出定值;若不是,请说明理由.
②若定点M(1,-
3
2
)且k1k2=-
3
4
,试判断直线AB是否过一定点?若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若有且只有一个常数c使得对于任意x∈[a,2a],都有y∈[a,a2]满足方程logaxy=c,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x3
3
+
1
2
ax2+2bx+c的两个极值分别为f(x1)和f(x2),若x1和x2分别在区间(-2,0)与(0,2)内,则
b-2
a-1
的取值范围为(  )
A、(-2,
2
3
B、[-2,
2
3
]
C、(-∞,-2)∪(
2
3
,+∞)
D、(-∞,-2]∪[
2
3
,+∞)

查看答案和解析>>

同步练习册答案