精英家教网 > 高中数学 > 题目详情
对一切的x∈(0,+∞),3x2+2ax-2xlnx+1≥0恒成立,求实数a的取值范围.
分析:先分离参数,再用导数法,求出相应函数的最值,即可求实数a的取值范围.
解答:解:∵x>0,∴3x2+2ax-2xlnx+1≥0可化为a≥lnx-
3
2
x-
1
2x
恒成立.(3分)
h(x)=lnx-
3
2
x-
1
2x
,则h′(x)=-
(x-1)(3x+1)
2x2
  (6分)
令h′(x)>0,∵x>0,∴0<x<1;
令h′(x)<0,∵x>0,∴x>1,
∴函数在(0,1)上单调递增,在(1,+∞)上单调递减
∴x=1时,h(x)取得最大值-2,(  10分)
∴a≥-2.
∴a的取值范围是[-2,+∞).       (12分)
点评:本题考查导数知识的运用,考查恒成立问题,考查函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=xlnx,g(x)=x3+ax2-x+2
(I)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅲ)对一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=xlnx,g(x)=x3+ax2-x+2
(Ⅰ)如果函数g(x)的单调递减区间为(-
13
,1),求函数g(x)的解析式;
(Ⅱ)对一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-x+2,g(x)=xlnx.
(1)如果函数f(x)的单调递减区间为(-
13
,1)
,求函数f(x)的解析式;
(2)在(1)的条件下,求函数y=f(x)的图象过点P(1,1)的切线方程;
(3)对一切的x∈(0,+∞),f'(x)+2≥2g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南京九中高三(上)10月月考数学试卷(解析版) 题型:解答题

已知f(x)=xlnx,g(x)=x3+ax2-x+2
(I)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅲ)对一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案