精英家教网 > 高中数学 > 题目详情

给出集合A={-2,-1,,1,2,3}。已知aA,使得幂函数为奇函数,指数函数在区间(0,+∞)上为增函数。

(1)试写出所有符合条件的a,说明理由;

(2)判断f(x)在(0,+∞)的单调性,并证明;

(3)解方程:f[g(x)]=g[f (x)]。

 

【答案】

(1)a=3

(2)f(x)=x3在(0,+∞)上为增函数

(3)x1=0,x2=x3=

【解析】解:(1)指数函数在区间(0,+∞)上为增函数,∴a>1,∴a只可能为2或3。而当a=2时,幂函数f(x)=x2为偶函数,只有当a=3时,幂函数f(x)=x3为奇函数故a=3…3分

(2)f(x)=x3在(0,+∞)上为增函数。                             

证明:在(0,+∞)上任取x1x2x1<x2

f(x1)-f(x2)==

x1<x2,∴x1-x2<0,>0,∴f(x1)-f(x2)>0,∴f(x1)>f(x2)。

f(x)=x3在(0,+∞)上为增函数。                                     …8分

(3)           ....10分

根据指数函数的性质,得3x=x3,∴x1=0,x2=x3=。           …12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)写出一元二次方程ax2+bx+c=0有一个正根和一个负根的充要条件
(2)二次函数y=ax2+bx+c的系数在集合A={-2,-1,0,1,2,3}中取值,且a,b,c互不相等,则共有多少条抛物线与x
轴的正、负半轴都有交点?
(3)在(2)的条件下,任取一条抛物线它恰与x轴的正、负半轴都有交点的概 率为多少?
(要求列出算式并写出结果,若无算式或算式不正确均不给分)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出集合A={-2,-1,-
1
2
-
1
3
1
2
,1,2,3}.已知a∈A,使得幂函数f(x)=xa为奇函数;指数函数g(x)=ax在区间(0,+∞)上为增函数.
(1)试写出所有符合条件的a,说明理由;
(2)判断f(x)在(0,+∞)的单调性,并证明;
(3)解方程:f[g(x)]=g[f(x)].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给出集合A={-2,-1,数学公式数学公式数学公式,1,2,3}.已知a∈A,使得幂函数f(x)=xa为奇函数;指数函数g(x)=ax在区间(0,+∞)上为增函数.
(1)试写出所有符合条件的a,说明理由;
(2)判断f(x)在(0,+∞)的单调性,并证明;
(3)解方程:f[g(x)]=g[f(x)].

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给出集合A={-2,-1,-
1
2
-
1
3
1
2
,1,2,3}.已知a∈A,使得幂函数f(x)=xa为奇函数;指数函数g(x)=ax在区间(0,+∞)上为增函数.
(1)试写出所有符合条件的a,说明理由;
(2)判断f(x)在(0,+∞)的单调性,并证明;
(3)解方程:f[g(x)]=g[f(x)].

查看答案和解析>>

同步练习册答案