精英家教网 > 高中数学 > 题目详情

【题目】已知二项式 的展开式.

(1)求展开式中含项的系数;

(2)如果第项和第项的二项式系数相等,求的值.

【答案】(1);(2)1

【解析】试题分析:(1)写出二项展开式的通项公式,当的指数是可得到关于方程,解方程可得的值从而可得展开式中含项的系数;(2)根据上一问写出的通项公式,利用第项和第项的二项式系数相等,可得到一个关于的方程,解方程即可得结果.

试题解析(1)设第k+1项为Tk+1

令10-k=4,解得k=4,

故展开式中含x4项的系数为3 360.

(2)∵第3r项的二项式系数为,第r+2项的二项式系数为

,故3r-1=r+1或3r-1+r+1=10,

解得r=1或r=2.5(不合题意,舍去),∴r=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx),gx)满足关系gx)=fxfx),其中α是常数.

(1)设fx)=cosx+sinx,求gx)的解析式;

(2)设计一个函数fx)及一个α的值,使得

(3)当fx)=|sinx|+cosx时,存在x1x2R,对任意xRgx1)≤gx)≤gx2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定下列四个命题:

若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

垂直于同一直线的两条直线相互平行;

若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.

其中,为真命题的是  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,

(1)求证:EF⊥平面ACFD;
(2)求二面角B﹣AD﹣F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图像有两个不同交点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆离心率为是椭圆的左、右焦点,以为圆心,为半径的圆和以为圆心、为半径的圆的交点在椭圆上.

(1)求椭圆的方程;

(2)设椭圆的下顶点为,直线与椭圆交于两个不同的点,是否存在实数使得以为邻边的平行四边形为菱形?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=(  )

A.7
B.12
C.17
D.34

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义域为R的偶函数,f(-1)=3,且当x≥0时,fx)=2x+x+cc是常数),则不等式fx-1)<6的解集是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案