精英家教网 > 高中数学 > 题目详情

已知的顶点,顶点在直线上;
(Ⅰ).若求点的坐标;
(Ⅱ).设,且,求角.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)因为顶点在直线上,则可设,利用正弦定理将化成,带入点的坐标得,从而解出,得出.
(Ⅱ).设,将点的坐标带入,解得,而,所以根据余弦定理得
试题解析:(Ⅰ)设由已知及正弦定理得
即  ,解得
(Ⅱ).设


再根据余弦定理得.
考点:1.正弦定理的应用;2.向量的数量积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在△ABC中,分别为角所对的三边,已知
(Ⅰ)求的值
(Ⅱ)若,求边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知,求边的长及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,分别为角的对边,△ABC的面积S满足.
(1)求角的值;
(2)若,设角的大小为表示,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,内角的对边分别为,且
(Ⅰ)求角的大小;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,分别是角的对边,向量,且//
(Ⅰ)求角的大小;
(Ⅱ)设,且的最小正周期为,求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.
(Ⅰ)求B;
(Ⅱ)若sinAsinC=,求C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的角的对边分别为,已知.
(Ⅰ)求角
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知.
(Ⅰ)求的值;
(Ⅱ)若,求的面积.

查看答案和解析>>

同步练习册答案