精英家教网 > 高中数学 > 题目详情
5.若直线y=x+b与曲线x2-4x+y2-6y+9=0(y≤3)有公共点,则b的取值范围是(  )
A.[-1,1+2$\sqrt{2}$]B.[1-2$\sqrt{2}$,1+2$\sqrt{2}$]C.[1-2$\sqrt{2}$,3]D.[1-$\sqrt{2}$,3]

分析 曲线表示以(2,3)为圆心、半径等于2的半圆,当半圆和直线y=x+b相切时,求得b的值;当直线y=x+b经过点(0,3)时,求得b的值,数形结合求得b的范围.

解答 解:曲线x2-4x+y2-6y+9=0,即(x-2)2+(y-3)2 =4 (y≤3),
表示以(2,3)为圆心、半径等于2的半圆,
如图所示:当半圆和直线y=x+b相切时,由$\frac{|2-3+b|}{\sqrt{2}}$=2,
求得b=1-2$\sqrt{2}$,或b=1+2$\sqrt{2}$(舍去).
当直线y=x+b经过点(0,3)时,求得b=3.
综上可得,b的取值范围是[1-2$\sqrt{2}$,3],
故选:C.

点评 本题主要考查圆的标准方程,直线和圆的位置关系,体现了数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+3x(x≥0)}\\{g(x)(x<0)}\end{array}\right.$为奇函数,则f(g(-1))=(  )
A.-28B.-8C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知△ABC的两边长分别为2,3,这两边的夹角的余弦值为$\frac{1}{3}$,则△ABC的外接圆的直径为(  )
A.$\frac{9\sqrt{2}}{2}$B.$\frac{9\sqrt{2}}{4}$C.$\frac{9\sqrt{2}}{6}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\left\{\begin{array}{l}{x+m,x≥m}\\{-x+3m,x<m}\end{array}\right.$.
(1)当m=0时,判断函数f(x)的奇偶性,并证明;
(2)若f(x)≥2对一切x∈R恒成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知正四棱台高是12cm,两底面边长之差为10cm,全面积为512cm2
(1)求上、下底面的边长.
(2)作出其三视图(单位长度为0.5厘米).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于函数f(x)的定义域中任意的x1、x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0;
④f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$.
当f(x)=2x时,上述结论中正确的有(  )个.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)若函数y=f(x)的图象与直线y=$\frac{1}{2}$x+a没有交点,求a的取值范围;
(3)若函数h(x)=4f(x)+${\;}^{\frac{1}{2}}$x+m•2x-1,x∈[0,log23],是否存在实数m使得h(x)最小值为0,若存在,求出m的值; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.用数学归纳法证明2+3+4+…+n=$\frac{(n-1)(n+2)}{2}$时,第一步取n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a1,a2,…a2014都是正数且a1+a2+…+a2014=1.则$\frac{{{a}_{1}}^{2}}{2+{a}_{1}}$+$\frac{{{a}_{2}}^{2}}{2+{a}_{2}}$+…$\frac{{{a}_{2013}}^{2}}{2+{a}_{2013}}$+$\frac{{{a}_{2014}}^{2}}{2+{a}_{2014}}$的最小值为$\frac{1}{4029}$.

查看答案和解析>>

同步练习册答案