精英家教网 > 高中数学 > 题目详情
13、(文)已知数列{an}的前n项和Sn=2n(n+1)则a5的值为(  )
分析:因为Sn表示数列的前n项的和,所以a5表示数列前5项的和减去数列前4项的和,进而可得到答案.
解答:解:由题意可得:a5=S5-S4
因为Sn=2n(n+1),
所以S5=10(5+1)=60,S4=8(4+1)=40,
所以a5=20.
故选C.
点评:解决此类问题的关键是掌握Sn表示的意义是数列前n项的和,并且加以正确的计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文)已知数列{an}满足an+1=an+
1
n(n+1)
,且a1=1,则an=
2-
1
n
2-
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知数列{an}满足a1=1,an=
12
an-1+1(n≥2),
(1)求a2,a3,a4的值;
(2)求证:数列{an-2}是等比数列,并求通项an

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知数列{an}中,a1=2  an=3an-1+4(n≥2),求an及Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(文) 已知数列{an}满足an+1=an+1(n∈N+),且a2+a4+a6=18,则log3(a5+a7+a9)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn}满足x1=
1
2
,xn+1=
1
1+xn
,n∈N*
(1)猜想数列{x2n}的单调性,并证明你的结论;
(2)证明:|xn+1-xn|≤
1
6
2
5
n-1
(文)已知数列{an}满足a1=1,a2=2,an+2=
an+an+1
2
,n∈N*
(1)令bn=an+1-an,证明:{bn}是等比数列;
(2)求{an}的通项公式.

查看答案和解析>>

同步练习册答案