精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{5}|x-3|,(x≠3)}\\{3,(x=3)}\end{array}\right.$,若函数F(x)=f2(x)+bf(x)+c有五个不同的零点x1,x2,…,x5,则f(x1+x2+…+x5)=log512.

分析 由函数的解析式可得,函数f(x)的图象关于直线x=3对称,再由题意可得,五个不等实根x1,x2,…,x5,有一个是3,其余4个关于直线x=3对称,故有x1+x2+…+x5=15,再根据 f(x1+x2+…+x5)=f(15),运算求得结果.

解答 解:∵已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{5}|x-3|,(x≠3)}\\{3,(x=3)}\end{array}\right.$,故有f(3)=3.
根据当x>3时,f(x)=log5(x-3),当x<3时,f(x)=log5(3-x),
画出函数图象,如图所示,可得函数f(x)的图象关于直线x=3对称.
再根据关于x的方程f2(x)+bf(x)+c=0有五个不等实根x1,x2,…,x5
f(x)=3时,方程f(x)=3有3个根,当f(x)=t,(t≠3)时,方程有2个不同的根,
∵关于x的方程f2(x)+bf(x)-3=0有五个不等实根x1,x2,…,x5,有一个是3,其余4个关于直线x=3对称
∴x1+x2+…+x5 =15,
∴f(x1+x2+…+x5)=f(15)=log512
故答案为  log512.

点评 本题主要考查函数的零点与方程的根的关系,关键是根据函数的图象关于x=3对称,得出5个根也关于直线x=3对称,从而求得x1+x2+…+x5 ,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|0<2x+a≤3},B={x|-$\frac{1}{2}$<x<2}.
(1)当a=1时,求(∁RB)∪A;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax3-3x2+1,a∈R.
(1)当a=1时,求函数f(x)的单调区间和极值;
(2)若方程f(x)=-3x2-3x+2恰有一个实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.球面上有3个点,其中任意两点的球面距离都等于大圆周长的$\frac{1}{6}$,经过这点的小圆周长为4π,求这个球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线C:y2=12x,过点P(2,0)且斜率为1的直线l与抛物线C相交于A、B两点,则线段AB的中点到抛物线C的准线的距离为(  )
A.22B.14C.11D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知长方体ABCD-A1B1C1D1的体积为6,∠C1BC的正切值为$\frac{1}{3}$,当AB+AD+AA1的值最小时,长方体ABCD-A1B1C1D1外接球的表面积(  )
A.10πB.12πC.14πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知A,B∈{-3,-1,1,2}且A≠B,则直线Ax+By+1=0的斜率小于0的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.甲、乙、丙、丁四个小朋友正在教室里玩耍,忽听“砰”的一声,讲台上的花盆被打破了,甲说:“是乙不小心闯的祸”乙说:“是丙闯的祸”,丙说:“乙说的不是实话.”丁说:“反正不是我闯的祸.”如果刚才四个小朋友中只有一个人说了实话,那么这个小朋友是丙.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“?x∈R,x2-2x+5≤0”的否定为(  )
A.?x∈R,x2-2x+5≥0B.?x∉R,x2-2x+5≤0C.?x∈R,x2-2x+5>0D.?x∉R,x2-2x+5>0

查看答案和解析>>

同步练习册答案