精英家教网 > 高中数学 > 题目详情

的三个内角成等差数列,求证:

详见解析.

解析试题分析:采用分析证明的方法,根据结论,可得;再利用A,B,C成等差数列,可得,利用余弦定理可得成立,代入求解即可证明结论.
证明:要证原式成立,只要证  (3分)
即证,即 (7分)
而三个内角成等差数列,上式成立(11分)
故原式大成立(12分).
考点:1.综合法与分析法;2.等差数列的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是等差数列,其中,前四项和
(1)求数列的通项公式an; 
(2)令,①求数列的前项之和
是不是数列中的项,如果是,求出它是第几项;如果不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前项和为.
(1)求数列的通项公式;
(2)求数列的前项和,并求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为公差不为零的等差数列,首项的部分项、…、恰为等比数列,且
(1)求数列的通项公式(用表示);
(2)若数列的前项和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列中,其前项和为,且.
(1)求数列的通项公式;
(2)设,求证:
(3)设为实数,对任意满足成等差数列的三个不等正整数 ,不等式都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•重庆)设数列{an}满足:a1=1,an+1=3an,n∈N+
(1)求{an}的通项公式及前n项和Sn
(2)已知{bn}是等差数列,Tn为前n项和,且b1=a2,b3=a1+a2+a3,求T20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}是等差数列,{bn}是等比数列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3
(1)求数列{an}和{bn}的通项公式;
(2)数列{cn}满足cn=anbn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数, 数列满足
(1)求数列的通项公式;
(2)令,若对一切成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列满足,且是方程的两根。
(1)求的通项公式;(2)求数列的前n项和

查看答案和解析>>

同步练习册答案