精英家教网 > 高中数学 > 题目详情
(2013•凉山州二模)图1是边长为1的菱形,∠DAB=60°,现沿BD将△ABD翻折起,得四面体A′-BDC(图2),若二面角A′-BD-C的平面角为α(0<a<π),给出以下四个命题:
①BD⊥A'C;
②A'C的长的范围是(0,
3
);
③当A'B⊥DC时,则cosα=
1
3

④当四面体A'-BDC体积最大时,A'-BDC的外接球的表面积是
3

其中真命题的个数为(  )
分析:对于①取BD的中点E,连结A'E,EC,如图,则A'E⊥BD,EC⊥BD,利用线面垂直的判定得出BD⊥平面A'EC,从而得出①正确;②当α→0时,A'C→0,当α→π时,A'C→AC=
3
,从而得出A'C的长的范围;③当A'B⊥DC时,此时四面体A′-BDC是一个正四面体,设顶点A'在底面上的射影是Q,利用解直角三角形可求出二面角A′-BD-C的平面角的余弦值;④当四面体A'-BDC体积最大时,侧面A'BD⊥底面BCD,过底面BCD的中心Q作底面的垂线与侧面A'BD的中心作侧面A'BD的垂线的交点O即为A'-BDC的外接球的球心,利用直角三角形可得出A'-BDC的外接球的半径,从而得出答案.
解答:解:①取BD的中点E,连结A'E,EC,如图,则A'E⊥BD,EC⊥BD,∴BD⊥平面A'EC,A'C?平面A'EC,
∴BD⊥A'C;①正确;
②当α→0时,A'C→0,当α→π时,A'C→AC=
3

∴A'C的长的范围是(0,
3
);正确;
③当A'B⊥DC时,此时四面体A′-BDC是一个正四面体,设顶点A'在底面上的射影是Q,则Q是三角形BCD的中心,
在直角三角形A'EQ中,则cosα=cos∠A′EC=
EQ
A′E
=
EQ
CE
=
1
3

∴cosα=
1
3
;③正确;
④当四面体A'-BDC体积最大时,侧面A'BD⊥底面BCD,如图,过底面BCD的中心Q作底面的垂线与侧面A'BD的中心作侧面A'BD的垂线的交点O即为A'-BDC的外接球的球心,
从而R2=OC2=OQ2+CQ2=(
3
2
×
1
3
)
2
+(
3
3
)2
=
5
12

A'-BDC的外接球的表面积是4πR2=
3
.正确.
故选D.
点评:本题主要考查点到面的距离计算以及折叠问题.在解决折叠问题时,一定要注意分析出哪些量发生了变化,又有哪些量没有发生变化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•凉山州二模)命题p:?x∈R,x2-3≤0,则?p是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•凉山州二模)递增等比数列{an}中,a2+a5=9,a3a4=18,则
a2013
a2010
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•凉山州二模)若x、y满足
x+y≤6
x≥1
y≥3
,则
y
x
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•凉山州二模)执行如图程序框图,输出结果是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•凉山州二模)某几何体三视图如图所示,则其体积为(  )

查看答案和解析>>

同步练习册答案