精英家教网 > 高中数学 > 题目详情

【题目】如图所示的几何体中,是菱形,平面.

1)求证:平面平面

2)求平面与平面构成的二面角的正弦值.

【答案】1)证明见解析;(2.

【解析】

1)取中点,连结,设,连结,先证明

,可证得平面,又,故平面,即得证.

2)如图所示的空间直角坐标系,求解平面与平面的法向量,利用二面角的向量公式即得解.

1)证明:取中点,连结,设,连结

在菱形中,

平面平面

平面平面

分别是的中点,

,且

四边形是平行四边形,则平面

平面平面平面.

2)由(1)中证明知,平面,则两两垂直,以

所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系.

是菱形,

得,,则

设平面的一个法向量为

,即

,求得,所以

同理,可求得平面的一个法向量为

设平面与平面构成的二面角的平面角为,则

,又

平面与平面构成的二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出以下几个结论:

①命题,则

②命题“若,则”的逆否命题为:“若,则

③“命题为真”是“命题为真”的充分不必要条件

④若,则的最小值为4

其中正确结论的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别为内角的对边,且满.

1)求的大小;

2)再在①,②,③这三个条件中,选出两个使唯一确定的条件补充在下面的问题中,并解答问题.________________,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼斯在他的著作《圆锥曲线论》中记载了用平面切割圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的轴重合),已知两个圆锥的底面半径均为1,母线长均为3,记过圆锥轴的平面为平面(与两个圆锥侧面的交线为),用平行于的平面截圆锥,该平面与两个圆锥侧面的交线即双曲线的一部分,且双曲线的两条渐近线分别平行于,则双曲线的离心率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )

A.128.5米B.132.5米C.136.5米D.110.5米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足,且的导函数,则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为m为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求曲线C和直线的直角坐标系方程;

2)已知直线与曲线C相交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为4的正方体中,点M是正方体表面上一动点,则下列说法正确的个数为(

①若点M在平面ABCD内运动时总满足,则点M在平面ABCD内的轨迹是圆的一部分;

②在平面ABCD内作边长为1的小正方形EFGA,点M满足在平面ABCD内运动,且到平面的距离等于到点F的距离,则M在平面ABCD内的轨迹是抛物线的一部分;

③已知点N是棱CD的中点,若点M在平面ABCD内运动,且平面,则点M在平面内的轨迹是线段;

④已知点PQ分别是的中点,点M为正方体表面上一点,若MPCQ垂直,则点M所构成的轨迹的周长为.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度.在每一轮游戏中,主持人给出ABCD四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果.设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxDyAyByCyD都是1234四个数字的一种排列.定义随机变量X=(xAyA2+xByB2+xCyC2+xDyD2,用X来衡量家长对小孩饮食习惯的了解程度.

1)若参与游戏的家长对小孩的饮食习惯完全不了解.

)求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;

)求X的分布列(简要说明方法,不用写出详细计算过程);

2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X4,请判断这位家长对小孩饮食习惯是否了解,说明理由.

查看答案和解析>>

同步练习册答案