精英家教网 > 高中数学 > 题目详情

【题目】如图1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F分别为AC,BC的中点,沿EF将△CEF折起,得到如图2所示的四棱锥C′﹣ABFE
(1)求证:AB⊥平面AEC′;
(2)当四棱锥C′﹣ABFE体积取最大值时,
①若G为BC′中点,求异面直线GF与AC′所成角;
②在C′﹣ABFE中AE交BF于C,求二面角A﹣CC′﹣B的余弦值.

【答案】
(1)解:证明:因为△ABC 是等腰直角三角形,∠CAB=90°,E,F 分别为AC,BC 的中点,

所以EF⊥AE,EF⊥C'E.

又因为AE∩C'E=E,所以EF⊥平面AEC'.

由于EF∥AB,所以有AB⊥平面AEC'.


(2)解:①取AC'中点D,连接DE,EF,FG,GD,

由于GD 为△ABC'中位线,以及EF 为△ABC 中位线,

所以四边形DEFG 为平行四边形.

直线GF 与AC'所成角就是DE 与AC'所成角.

所以四棱锥C'﹣ABFE 体积取最大值时,C'E 垂直于底面ABFE.

此时△AEC'为等腰直角三角形,

ED 为中线,所以直线ED⊥AC'.

又因为ED∥GF,所以直线GF 与AC'所成角为

② 因为四棱锥C'﹣ABFE 体积取最大值,

分别以EA、EF、EC'所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系如图,

则C'(0,0,a),B(a,2a,0),F(0,a,0),C'B(a,2a,﹣a),C'F(0,a,﹣a).

设平面C'BF 的一个法向量为 =(x,y,z),

得,取y=1,得 =(﹣1,1,1).

平面C'AE 的一个法向量 =(0,1,0).

所以cos< >= =

故平面C'AE与平面C'BF的平面角的夹角的余弦值为


【解析】(1)推导出EF⊥AE,EF⊥C'E,从而EF⊥平面AEC',由此能证明AB⊥平面AEC'.(2)①取AC'中点D,连接DE,EF,FG,GD,推导出四边形DEFG 为平行四边形,直线GF 与AC'所成角就是DE 与AC'所成角,由此能求出直线GF 与AC'所成角.②分别以EA、EF、EC'所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,利用向量法能求出平面C'AE与平面C'BF的平面角的夹角的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,2a9=a12+13,a2=5,其前n项和为Sn
(1)求数列{an}的通项公式;
(2)求数列{ }的前n项和Tn , 并证明Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线yx2-6x+1与轴交于点,与轴交于 两点.

(1)求△的面积

(2)外接圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某镇有一块空地,其中 。当地镇政府规划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖,其中都在边上,且,挖出的泥土堆放在地带上形成假山,剩下的地带开设儿童游乐场. 为安全起见,需在的周围安装防护网.

1)当时,求防护网的总长度;

2)若要求挖人工湖用地的面积是堆假山用地的面积的倍,试确定 的大小;

3)为节省投入资金,人工湖的面积要尽可能小,问如何设计施工方案,可使 的面积最小?最小面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点O和点F2(﹣ ,0)分别为双曲线 =1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1 , C2的极坐标方程分别为ρ=2cosθ, ,射线θ=φ, 与曲线C1交于(不包括极点O)三点A,B,C.
(Ⅰ)求证:
(Ⅱ)当 时,求点B到曲线C2上的点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,定义:dn=an+2+an﹣2an+1(n≥1),a1=1.
(1)若dn=an , a2=2,求an
(2)若a2=﹣2,dn≥1,求证此数列满足an≥﹣5(n∈N*);
(3)若|dn|=1,a2=1且数列{an}的周期为4,即an+4=an(n≥1),写出所有符合条件的{dn}.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在无穷数列中, ,对于任意,都有 .设,记使得成立的n的最大值为

Ⅰ)设数列{an}1357,写出b1b2b3的值;

Ⅱ)若{an}为等比数列,且a2=2,求b1+b2+b3+…+b50的值;

Ⅲ)若{bn}为等差数列,求出所有可能的数列{an}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC90°ABBC1PABC内一点,∠BPC90°.

(1)PB,求PA

(2)若∠APB150°,求tanPBA.

查看答案和解析>>

同步练习册答案