精英家教网 > 高中数学 > 题目详情

已知函数f(x)=xlnx,g(x)=-x2+ax-2.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)若函数y=f(x)与y=g(x)的图象恰有一个公共点,求实数a的值;
(3)若函数y=f(x)+g(x)有两个不同的极值点x1,x2(x1<x2),且x2-x1>ln2,求实数a的取值范围.

解:(1)由f′(x)=lnx+1=0,可得x=
∴①时,函数f(x)在(t,)上单调递减,在(,t+2)上单调递增
∴函数f(x)在[t,t+2](t>0)上的最小值为
②当t≥时,f(x)在[t,t+2]上单调递增,∴f(x)min=f(t)=tlnt,
∴f(x)min=
(2)函数y=f(x)与y=g(x)的图象恰有一个公共点,等价于f(x)-g(x)=xlnx+x2-ax+2=0在(0,+∞)上有且只有一根,即a=在(0,+∞)上有且只有一根
令h(x)=,则
∴x∈(0,1)时,h′(x)<0,函数单调递减;x∈(1,+∞)时,h′(x)>0,函数单调递增
∴a=h(x)min=h(1)=3
(3)y=f(x)+g(x)=xlnx-x2+ax-2,则y′=lnx-2x+1+a
题意即为y′=lnx-2x+1+a=0有两个不同的实根x1,x2(x1<x2),
即a=-lnx+2x-1有两个不同的实根x1,x2(x1<x2),
等价于直线y=a与函数G(x)=-lnx+2x-1的图象有两个不同的交点
,∴G(x)在(0,)上单调递减,在(,+∞)上单调递增
画出函数图象的大致形状(如右图),
由图象知,当a>G(x)min=G()=ln2时,x1,x2存在,且x2-x1的值随着a的增大而增大
而当x2-x1=ln2时,由题意
两式相减可得
∴x2=4x1代入上述方程可得
此时
所以,实数a的取值范围为
分析:(1)求导数,再分类讨论,确定函数在区间上的单调性,即可求得函数的最小值;
(2)将函数图象只有一个公共点转化为方程只有一根,再分离参数,求出函数的最小值即可;
(3)函数由两个不同的极值点转化为导函数等于0的方程有两个不同的实数根,进而转化为图象的交点问题,由此可得结论.
点评:本题考查导数知识的运用,考查函数的单调性与最值,考查分离参数法的运用,考查数形结合的数学思想,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案