精英家教网 > 高中数学 > 题目详情
16.在以原点为极点,x 轴正半轴为极轴的极坐标系中,曲线 C1的极坐标方程为ρ2cos2θ+8ρcosθ=ρ2+8.
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)曲线C2的方程为$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$ (t为参数),若曲线C1与曲线C2交于A、B两点,且|AB|=8,求直线AB的斜率.

分析 (Ⅰ)由化简ρ2cos2θ+8ρcosθ=ρ2+8得ρ2(2cos2θ-1)+8ρcosθ=ρ2+8⇒⇒曲线C1的直角坐标方程:y2=4(x-1).
(Ⅱ)把C2的方程$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$ 代入曲线C1的方程,y2=4(x-1).得t2sin2α-4tcosα-4=0.
|AB|=|t1-t2|=8⇒(t1+t22-4t1t2=64,⇒sin2α、tanα

解答 解:(Ⅰ)由ρ2cos2θ+8ρcosθ=ρ2+8得ρ2(2cos2θ-1)+8ρcosθ=ρ2+8⇒2x2+8x=2x2+2y2+8
⇒曲线C1的直角坐标方程:y2=4(x-1).
(Ⅱ)把C2的方程$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$ 代入曲线C1的方程,y2=4(x-1).得t2sin2α-4tcosα-4=0.
t1+t2=$\frac{4cosα}{si{n}^{2}α}$,t1t2=-$\frac{4}{si{n}^{2}α}$.
∴|AB|=|t1-t2|=8⇒(t1+t22-4t1t2=64,⇒sin2α=$\frac{1}{2}$,tanα=±1∴直线AB的斜率为±1.

点评 本题考查了直线参数方程及其应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.点P(1,-2)到直线3x-4y-1=0的距离是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上单调递减.
(1)写出f(x)在R上的单调性(不用证明);
(2)若f(1-a)+f(2a-5)<0,请求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知椭圆经过点A(0,$\frac{5}{3}$)和B(1,1),求椭圆的标准方程.
(2)若抛物线y2=2px(p>0)上的一点M 到焦点及对称轴的距离分别为10和6,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex+mx2
(1)若m=1,求曲线y=f(x)在(0,f(0))处的切线方程;
(2)若存在实数m,n,使得f(x)-n≥0(m,n∈R)恒成立,求m-n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.8次投篮中,投中3次,其中恰有2次连续命中的情形有30种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设等差数列{an}的公差为d,前n项和为Sn,若a1=d=1,则$\frac{{{S_n}+8}}{a_n}$的最小值$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.以下说法正确的是(  )
A.球的截面中过球心的截面面积未必最大
B.圆锥截去一个小圆锥后剩下来的部分是圆台
C.棱锥截去一个小棱锥后剩下来的部分是棱台
D.用两个平行平面去截圆柱,截得的中间部分还是圆柱

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是边长为2的正方形,PD=DC,E,F分别是AB,PB的中点.
(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使FG⊥平面PCB,并证明你的结论;
(3)求三棱锥B-DEF的体积.

查看答案和解析>>

同步练习册答案