【题目】设f(x)是连续的偶函数,且当x>0时,f(x)是单调函数,则满足f(x)=f( )的所有x之和为( )
A.﹣4031
B.﹣4032
C.﹣4033
D.﹣4034
科目:高中数学 来源: 题型:
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: , 称为相应于点的残差(也叫随机误差));
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | 0.1 | ||||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较, 的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入—成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据“2015年国民经济和社会发展统计公报” 中公布的数据,从2011 年到2015 年,我国的
第三产业在中的比重如下:
年份 | |||||
年份代码 | |||||
第三产业比重 |
(1)在所给坐标系中作出数据对应的散点图;
(2)建立第三产业在中的比重关于年份代码的回归方程;
(3)按照当前的变化趋势,预测2017 年我国第三产业在中的比重.
附注: 回归直线方程中的斜率和截距的最小二乘估计公式分别为:
, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣ax,(a∈R)
(1)若函数f(x)在点(1,f(1))处切线方程为y=3x+b,求a,b的值;
(2)当a>0时,求函数f(x)在[1,2]上的最小值;
(3)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点,定直线,动点到点的距离与到直线的距离之比等于.
(1)求动点的轨迹的方程;
(2)设轨迹与轴负半轴交于点,过点作不与轴重合的直线交轨迹于两点,直线分别交直线于点.试问:在轴上是否存在定点,使得?若存在,求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取人做调查,得到如下列联表:
已知在这人中随机抽取一人抽到喜欢游泳的学生的概率为,
(Ⅰ)请将上述列联表补充完整,并判断是否有%的把握认为喜欢游泳与性别有关?并说明你的理由;
(Ⅱ)针对问卷调查的名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取人成立游泳科普知识宣传组,并在这人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率,参考公式: ,其中.参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an},满足d>0,且a1+a2+a3=9,a1a3=5
(1)求{an}的通项公式;
(2)若数列{bn}满足bn= ,Sn为数列{bn}的前n项和,证明:Sn<3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0),B(3,0)两点,则圆的方程为( )
A.(x-2)2+(y+1)2=2
B.(x+2)2+(y-1)2=2
C.(x-1)2+(y-2)2=2
D.(x-2)2+(y-1)2=2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sinxcosx+2 cos2x﹣ .
(1)求函数f(x)的单调减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b= ,f(A﹣ )= ,求角C.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com