精英家教网 > 高中数学 > 题目详情
9.下列几个命题:
①方程x2+(a-3)x+a=0若有一个正实根,一个负实根,则a<0;
②函数f(x)=a是偶函数,但不是奇函数;
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为(-3,1);
④一条曲线y=|3-x2|和直线y=a,(a∈R)的公共点个数是M,则M的值不可能是1;
其中正确的有①④.

分析 由题意求出a的范围判断①;举例说明②错误;由函数图象左右平移值域不变说明③错误;画出图形,数形结合说明④正确.

解答 解:①令f(x)=x2+(a-3)x+a,方程x2+(a-3)x+a=0若有一个正实根,一个负实根,则f(0)<0,即a<0,①正确;
②函数f(x)=a是偶函数,但不是奇函数错误,若a=0,则f(x)=a即是偶函数又是奇函数;
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为(-3,1),错误,原因是函数f(x+1)是把函数f(x)向左平移1个单位得到,函数值域不变;
④作出函数y=|3-x2|的图象如图,
由图可知,曲线y=|3-x2|和直线y=a,(a∈R)的公共点个数是M可以是0,2,3,4,不可能是1,④正确.
故答案为:①④.

点评 本题考查命题的真假判断与应用,考查了函数奇偶性的性质,考查函数的零点与方程根的问题,训练了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2-2x-3<0},B={x|x2<9},则(  )
A.A?BB.B?AC.A=BD.A∩B=Φ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA=PB,且侧面PAB⊥平面ABCD,点E是棱AB的中点.
(1)求证:PE⊥AD;
(2)若∠ADC=$\frac{π}{3}$,求证:平面PEC⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平行六面体ABCD-A1B1C1D1中,O是B1D1的中点,求证:B1C∥平面ODC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x+1|+|x-1|,
(1)画出f(x)的图象;
(2)根据图象写出f(x)的在区间[-2,+∞)最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,空间四边形ABCD的每条边和AC,BD的长都等于a,点M,N分别是AB,CD的中点,求证:MN⊥AB,MN⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=log${\;}_{\frac{1}{2}}$(ax2+2x+1)的定义域为全体实数,则a的取值范围是a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若一元二次不等式x2-$\frac{2}{\sqrt{a}}$x+1-$\frac{1}{b}$>0(b>a)的解集为{x|x≠$\frac{1}{\sqrt{a}}$},则$\frac{4}{a-1}$+$\frac{16}{b-1}$的最小值为(  )
A.16B.25C.36D.49

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数y=$\sqrt{4x-{x}^{2}-4}$的定义域.

查看答案和解析>>

同步练习册答案