精英家教网 > 高中数学 > 题目详情
4.若将函数y=sin(2x+φ)(0<φ<π)图象向右平移$\frac{π}{8}$个单位长度后关于y轴对称,则φ的值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{3π}{4}$D.$\frac{5π}{8}$

分析 利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的值.

解答 解:将函数y=sin(2x+φ)图象向右平移$\frac{π}{8}$个单位长度后,得到y=sin(2x-$\frac{π}{4}$+φ)的图象,
根据所得函数的图象关于y轴对称,可得-$\frac{π}{4}$+φ=kπ+$\frac{π}{2}$,k∈Z,即φ=kπ+$\frac{3π}{4}$,k∈Z,
故可取φ=$\frac{3π}{4}$,
故选:C.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C的对边分别为a、b、c,$\overrightarrow{m}$=(b,cosB),$\overrightarrow{n}$=(2a-c,cosC)且$\overrightarrow{m}$∥$\overrightarrow{n}$,求
(1)角B的大小.
(2)sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.鄂西北某湿地公园里,A,B两地相距2km,现在准备在湿地公园里围成一片以AB为一条对角线的平行四边形区域,建立生态观光园.按照规划,围墙总长度为8km.求:
(1)平行四边形另两个顶点C,D所在的轨迹方程;
(2)观光园的最大面积能达到多少?
(3)该湿地公园里有一条直线型步行小径刚好过点A,且与AB成45°角,现要对步行小径进行整修改造,但考虑到今后湿地公园里的步行小径要重新设计改造,因此该步行小径可能被观光园围住的部分暂不整修,那么暂不整修的部分有多长?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设全集U=R,集合$A=\left\{{x|y={{log}_2}x}\right\},B=\left\{{x|{x^2}-1<0}\right\}$,则(∁UA)∩B={x|-1<x≤0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的函数f(x)=$\frac{ax}{{{x^2}+1}}$+1,a∈R以下说法正确的是(  )
①函数f(x)的图象是中心对称图形
②函数f(x)有两个极值
③函数f(x)零点个数最多为三个
④当a>0时,若1<m<n,则f(m)+f(n)>2f($\frac{m+n}{2}$)
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若点(1,1)在二元一次不等式x+y+a<0所表示的平面区域内,则实数a的取值范围是a<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等比数列{an}中,a1•a9=64,a3+a7=20,则a35=(  )
A.49B.$\frac{1}{{4}^{6}}$C.$\frac{1}{{4}^{6}}$或49D.-49

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果方程x2-4ax+3a2=0的一根小于1,另一根大于1,那么实数a的取值范围是(  )
A.$\frac{1}{3}<a<1$B.a>1C.$a<\frac{1}{3}$D.a=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目供选择,若投资甲项目一年后可获得的利润为ξ1(万元)的概率分布列如表所示:
ξ1 110 120170 
P m  0.4n 
且ξ1的期望E(ξ1)=120;若投资乙项目一年后可获得的利润ξ2(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否受第二和第三季度进行产品的价格调整,两次调整相互独立,且调整的概率分别为p(0<p<1)和1-p,乙项目产品价格一年内调整次数X(次)与ξ2的关系如表所示:
X(次)  01 2 
 ξ2 41.2 117.6204.0 
(1)求m,n的值;
(2)求ξ2的分布列;
(3)根据投资回报率的大小请你为公司决策:当p在什么范围时选择投资乙项目,并预测投资乙项目的最大投资回报率是多少?(投资回报率=年均利润/投资总额×100%)

查看答案和解析>>

同步练习册答案