精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若关于x的方程有解,求实数a的最小整数值;

2)若对任意的,函数在区间上的最大值与最小值的差不超过1,求实数a的取值范围.

【答案】(1)2(2)

【解析】

1)化简方程得,问题转化为求的最小值,对求导,分析导函数的正负得的单调性,从而得出的最小值,可得解;

2)分析函数的定义域和单调性,得出的最小值和最大值,由已知建立不等式,再构造新函数,求导分析其函数的单调性,得其最值,从而得解.

1化为

,则

的单调减区间为,单调增区间为

的最小整数值为2

2

的定义域为,且是增函数.

上的最大值为,最小值为

由题意知

上是减函数,最大值为

的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对任意实数x和任意,恒有,则实数a的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(1) 求抛物线的方程;

(2) 当点为直线上的定点时,求直线的方程;

(3) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当b=0时,求函数的极小值;

2)若已知b>1且函数与直线y=-x相切,求b的值;

3)在(2)的条件下,函数与直线y=-x+m有三个公共点,求m的取值范围.(直接写出答案)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数满足关系,其中是常数.

1)设,求的解析式;

2)是否存在函数及常数)使得恒成立?若存在,请你设计出函数及常数;不存在,请说明理由;

3)已知时,总有成立,设函数)且,对任意,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调区间;

2)设函数,若,且上恒成立,求的取值范围;

3)设函数,若,且上存在零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:已知函数上的最小值为,若恒成立,则称函数上具有性质.

)判断函数上是否具有性质?说明理由.

)若上具有性质,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的短轴为直径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆过右焦点的弦为、过原点的弦为,若,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为集合上的函数满足:①;②);③成等比数列;这样的不同函数的个数为________

查看答案和解析>>

同步练习册答案