精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形ABCD中,ABDCAEDCBEAD.MN分别是ADBE上的点,且AM=BN,将三角形ADE沿AE折起,则下列说法正确的是 (填上所有正确说法的序号).

不论D折至何位置(不在平面ABC)都有MN平面DEC

不论D折至何位置都有MNAE

不论D折至何位置(不在平面ABC)都有MNAB

在折起过程中,一定存在某个位置,使ECAD.

【答案】①②④

【解析】连接MN,交AE于点P,则MPDENPABABCDNPCD.

对于,由题意可得平面MNP平面DECMN平面DEC,故正确;

对于AEMPAENPMPNP=PAE平面MNPAEMN,故正确;

对于NPAB不论D折至何位置(不在平面ABC)都不可能有MNAB,故不正确;

对于,由题意知ECAE,故在折起的过程中,当ECDE时,EC平面ADEECAD,故正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次购物抽奖活动中,假设某10张券中有一等奖1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有将;某顾客从此10张券中任取2张,求:

1)该顾客中奖的概率;

2)该顾客获得的奖品总价值(元)的概率分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

等腰梯形ABEF中,ABEFAB=2,ADAF=1,AFBFOAB的中点,矩形ABCD 所在的平面和平面ABEF互相垂直.

(1)求证:AF⊥平面CBF

(2)设FC的中点为M,求证:OM∥平面DAF

(3)求三棱锥CBEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数.

(1)求定义域;

(2)判断的奇偶性,并说明理由;

(3)求使的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数fx)=|2x1|+|2xa|.

(I)若fx)的最小值为2,求a的值;

(II)fx)≤|2x4|的解集包含[2,1],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本.

(1)根据所给样本数据完成下面2×2列联表;

(2)请问能有多大把握认为药物有效?

不得禽流感

得禽流感

总计

服药

不服药

总计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于命题:存在一个常数,使得不等式对任意正数恒成立.

(1)试给出这个常数的值;

(2)在(1)所得结论的条件下证明命题

(3)对于上述命题,某同学正确地猜想了命题:“存在一个常数,使得不等式对任意正数恒成立.”观察命题与命题的规律,请猜想与正数相关的命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按题目要求独立完成.规定:至少正确完成其中2道题的便可通过.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.

(1)分别求甲、乙两人正确完成面试题数的分布列及数学期望;

(2)请分析比较甲、乙两人谁面试通过的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若当时,函数的图象恒在直线上方,求实数的取值范围;

(2)求证:

查看答案和解析>>

同步练习册答案