精英家教网 > 高中数学 > 题目详情
已知双曲线与椭圆
x2
4
+y2=1
共焦点,它们的离心率之和为
3
3
2

(1)求椭圆与双曲线的离心率e1、e2
(2)求双曲线的标准方程与渐近线方程;
(3)已知直线l:y=
1
2
x+m
与椭圆有两个交点,求m的取值范围.
(1)∵椭圆
x2
4
+y2=1
中,
a=2,c=
3

∴椭圆离心率e1=
3
2

∵双曲线与椭圆
x2
4
+y2=1
的离心率之和为
3
3
2

∴双曲线的离心率e2=
3
3
2
-
3
2
=
3

(2)∵椭圆
x2
4
+y2=1
焦点为F1(-
3
,0),F2
3
,0),
双曲线与椭圆
x2
4
+y2=1
共焦点,
∴双曲线的焦点为F1(-
3
,0),F2
3
,0),
∵双曲线的离心率e2=
3

∴双曲线的标准方程为x2-
y2
2
=1

∴双曲线的渐近线方程为y=±
2
x.
(3)由
x2
4
+y2=1
y=
1
2
x+m
,得2x2+4mx+4m2-4=0,
∵直线l:y=
1
2
x+m
与椭圆有两个交点,
∴△=(4m)2-8(4m2-4)>0,
解得-
2
<m<
2

故m的取值范围是(-
2
2
).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

长方形ABCD,AB=2
2
,BC=1,以AB的中点O为原点建立如图所示的平面直角坐标系.
(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程:
(2)过点p(0,2)的直线m与(1)中椭圆只有一个公共点,求直线m的方程:
(3)过点p(0,2)的直线l交(1)中椭圆与M,N两点,是否存在直线l,使得以弦MN为直径的圆恰好过原点?若存在,直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,从椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且ABOP,|F1A|=
10
+
5

(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点C,D,且
OC
OD
?若存在,写出该圆的方程,并求|CD|的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
a2
+y2=1
(a>1)的离心率e=
3
2
,直线x=2t(t>0)与椭圆E交于不同的两点M、N,以线段MN为直径作圆C,圆心为C
(Ⅰ)求椭圆E的方程;
(Ⅱ)当圆C与y轴相切的时候,求t的值;
(Ⅲ)若O为坐标原点,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过双曲线
x2
3
-
y2
6
=1
的右焦点F,倾斜角为30°的直线交此双曲线于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知焦距为4的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
左、右顶点分别为A、B,椭圆C的右焦点为F,
过F作一条垂直于x轴的直线与椭圆相交于R、S,若线段RS的长为
10
3

(1)求椭圆C的方程;
(2)设Q(t,m)是直线x=9上的点,直线QA、QB与椭圆C分别交于点M、N,求证:直线MN必过x轴上的一定点,并求出此定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦点,Q是双曲线上动点,从左焦点引∠F1QF2的平分线的垂线,垂足为P,则P点的轨迹是(  )的一部分.
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的两条准线间距离为3,右焦点到直线x+y-1=0的距离为
2
2

(1)求双曲线C的方程;
(2)双曲线C中是否存在以点P(1,
1
2
)
为中点的弦,并说明理由.

查看答案和解析>>

同步练习册答案