精英家教网 > 高中数学 > 题目详情
19.设常数b∈R.若函数$y=x+\frac{2^b}{x}(x>0)$在(0,4]上是减函数,在[4,+∞)上是增函数,则b=4.

分析 由题意$\sqrt{{2}^{b}}$=4,即可求出b的值.

解答 解:由题意$\sqrt{{2}^{b}}$=4,∴b=4.
故答案为4.

点评 本题考查函数的单调性,考查基本不等式的运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若tanα<0,则(  )
A.sinα<0B.cosα<0C.sinαcosα<0D.sinα-cosα<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若存在非零的实数a,使得f(x)=f(a-x)对定义域上任意的x恒成立,则函数f(x)可能是(  )
A.f(x)=x2-2x+1B.f(x)=x2-1C.f(x)=2xD.f(x)=2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若幂函数$f(x)={x^{{m^2}-m-2}}({m∈Z})$在(0,+∞)是单调减函数,则m的取值集合是{0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=|x-1|+|x-a|
(1)若a=-1,解不等式f(x)≥3;
(2)若不等式f(x)≥3对一切x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.x>1是“x>2”的(  )
A.充要条件B.必要条件
C.必要非充分条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=sin(2x+\frac{7π}{4})+cos(2x-\frac{3π}{4})$,x∈R.
(1)求f(x)的最小正周期和单调增区间;
(2)已知$cos(β-α)=\frac{4}{5}$,$cos(β+α)=-\frac{4}{5}$,$0<α<β≤\frac{π}{2}$,求f(β).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤1}\end{array}\right.$,则目标函数z=x+3y的最小值为(  )
A.2B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在{1,3,5}和{2,4}两个集合中各取一个数组成一个两位数,则这个数能被4整除的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案