【题目】已知数列的前项和为,且2,,成等差数列.
(1)求数列的通项公式;
(2)若,求数列的前项和;
(3)对于(2)中的,设,求数列中的最大项.
科目:高中数学 来源: 题型:
【题目】为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如表所示:
组别 | 候车时间 | 人数 |
一 | 2 | |
二 | 6 | |
三 | 4 | |
四 | 2 | |
五 | 1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
在如图所示的多面体中,四边形和都为矩形。
(Ⅰ)若,证明:直线平面;
(Ⅱ)设, 分别是线段, 的中点,在线段上是否存在一点,使直线平面?请证明你的结论。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加环保知识竞赛的1200名学生中,随机抽取60名,将其成绩(均为整数)分成六段,,…,后画出如图的频率分布直方图.
(1)估计这次竞赛成绩的众数与中位数(结果保留小数点后一位);
(2)若这次竞赛成绩不低于80分的同学都可以获得一份礼物,试估计该校参加竞赛的1200名学生中可以获得礼物的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点到其焦点的距离为.
(1)求与的值;
(2)若斜率为的直线与抛物线交于、两点,点为抛物线上一点,其横坐标为1,记直线的斜率为,直线的斜率为,试问:是否为定值?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
设是函数的图象上任意两点,且,已知点的横坐标为.
(1)求证:点的纵坐标为定值;
(2)若求;
(3)已知=,其中,为数列的前项和,若对一切都成立,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=.
(1)求f(2)+f(),f(3)+f()的值;
(2)求证:f(x)+f()是定值;
(3)求f(2)+f()+f(3)+f()+…+f(2012)+f()的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com