精英家教网 > 高中数学 > 题目详情
已知实数a,b,c∈[0,1],则a(1-b)+b(1-c)+c(1-a)的最大值为(  )
分析:构造成一次函数f(a)=a(1-b)+b(1-c)+c(1-a),后计算端点f(0)和f(1),计算f(0)与f(1)即可知,所有的端点值均不大于1.从而得出a(1-b)+b(1-c)+c(1-a)的最大值.
解答:解:用构造函数法,
选取a为变量,令 f(a)=a(1-b)+b(1-c)+c(1-a)是关于a的一次函数,
令a=1,得f(1)=1-b+b-bc=1-bc≤1;
令a=0 得f(0)=b-bc+c=b+c-bc-1+1=-(1-b)(1-c)+1≤1
由于一次函数最大值在端点0或1处取得,而f(0),f(1)均≤1,
所以 在[0,1]上,f(a)≤1,即a(1-b)+b(1-c)+c(1-a)≤1.
则a(1-b)+b(1-c)+c(1-a)的最大值为1.取得最大值的条件是a,b,c中一个为0,一个为1,
另一个可以取[0,1]内的任意一个数.
故选B.
点评:本题主要考查了函数的性质,考查了不等式的性质与应用,解答的关键是构造一次函数f(a)=a(1-b)+b(1-c)+c(1-a),利用一次函数的性质解决最值问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b,c满足a≤b≤c,且ab+bc+ca=0,abc=1,不等式|a+b|≥k|c|恒成立.则实数k的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c满足c<b<a且ac<0,则下列选项中一定不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若关于x的不等式|x+1|-|x-2|<a的解集不是空集,求实数a的取值范围;
(2)已知实数a,b,c,满足a+b+c=1,求(a-1)2+2(b-2)2+3(c-3)2最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲已知实数a,b,c满足a2+2b2+3c2=24
①求a+2b+3c的最值;
②若满足题设条件的任意实数a,b,c,不等式a+2b+3c>|x+1|-14恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.

查看答案和解析>>

同步练习册答案