精英家教网 > 高中数学 > 题目详情

【题目】某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)

1)根据以上数据完成下列的列联表;

2)能否有99%的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析.

主食蔬菜

主食肉类

合计

50岁以下

50岁以上

合计

参考公式:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

【答案】1)见解析 2)能,理由见解析

【解析】

1)完善列联表得到答案.

2)计算得到,比较数据得到答案.

1

主食蔬菜

主食肉类

合计

50岁以下

4

8

12

50岁以上

16

2

18

合计

20

10

30

2,有99%的把握认为亲属的饮食习惯与年龄有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了勾股圆方图,亦称赵爽弦图(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成).类比赵爽弦图,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( .

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在常数,使得无穷数列满足,则称数列Γ数列.已知数列Γ数列

1)若数列中,,试求的值;

2)若数列中,,记数列的前n项和为,若不等式恒成立,求实数λ的取值范围;

3)若为等比数列,且首项为b,试写出所有满足条件的,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若存在正数p,使得对任意都成立,则称数列为“拟等比数列”.

已知,若数列满足:

,求的取值范围;

求证:数列是“拟等比数列”;

已知等差数列的首项为,公差为d,前n项和为,若,且是“拟等比数列”,求p的取值范围请用d表示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方

向滚动,MN是小圆的一条固定直径的两个端点.那么,当小圆这

样滚过大圆内壁的一周,点MN在大圆内所绘出的图形大致是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对年利率为的连续复利,要在年后达到本利和,则现在投资值为是自然对数的底数.如果项目的投资年利率为的连续复利.

(1)现在投资5万元,写出满年的本利和,并求满10年的本利和;(精确到0.1万元)

(2)一个家庭为刚出生的孩子设立创业基金,若每年初一次性给项目投资2万元,那么,至少满多少年基金共有本利和超过一百万元?(精确到1年)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标平面内,直线l过点P(1,1),且倾斜角α.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sin θ.

(1)求圆C的直角坐标方程;

(2)设直线l与圆C交于AB两点,求|PA|·|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在线段的两端点各置一个光源,已知光源的发光强度之比为,则线段上光照度最小的一点到的距离之比为______(光学定律:点的光照度与到光源的距离的平方成反比,与光源的发光强度成正比)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为t为参数),以原点O为极点,x正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求直线l的普通方程和曲线C的直角坐标方程;

2)设P0-1),直线lC的交点为MN,线段MN的中点为Q,求.

查看答案和解析>>

同步练习册答案