分析 (Ⅰ)由F1(-1,0),C(-2,0)得:$a=2,b=\sqrt{3}$,即可求出椭圆M的标准方程;
(Ⅱ)通过设B(x0,y0)(-2<x0<2),利用$\overrightarrow{B{F_1}}•\overrightarrow{BC}=(-1-{x_0},-{y_0})•(-2-{x_0},-{y_0})$=$2+3{x_0}+{x_0}^2+{y_0}^2$=$\frac{1}{4}{x_0}^2+3{x_0}+5=0$,进而可得结论.
解答 解:(Ⅰ)由F1(-1,0),C(-2,0)得:$a=2,b=\sqrt{3}$.…(4分)
所以椭圆M的标准方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.…(5分)
(Ⅱ)设B(x0,y0)(-2<x0<2),则$\frac{{{x_0}^2}}{4}+\frac{{{y_0}^2}}{3}=1$,…(6分)
因为F1(-1,0),C(-2,0),
所以$\overrightarrow{B{F_1}}•\overrightarrow{BC}=(-1-{x_0},-{y_0})•(-2-{x_0},-{y_0})$=$2+3{x_0}+{x_0}^2+{y_0}^2$
=$\frac{1}{4}{x_0}^2+3{x_0}+5=0$…(9分)
解得:x0=-2或-10…(10分)
又因为-2<x0<2,所以点B不在以F1C为直径的圆上,
即不存在直线点l,使得点B在以线段F1C为直径的圆上.…(12分)
点评 本题是一道直线与圆锥曲线的综合题,考查运算求解能力,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {$\frac{{e}^{2}}{3}$} | B. | (0,$\frac{{e}^{2}}{3}$) | C. | ($\frac{{e}^{2}}{3}$,e) | D. | ($\frac{1}{e}$,1)∪{$\frac{{e}^{2}}{3}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{4}$ | π | $\frac{7π}{4}$ | $\frac{5π}{2}$ | $\frac{13π}{4}$ |
Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com