精英家教网 > 高中数学 > 题目详情
13.已知椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),点F1(-1,0)、C(-2,0)分别是椭圆M的左焦点、左顶点,过点F1的直线l(不与x轴重合)交M于A,B两点.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)是否存在直线l,使得点B在以线段F1C为直径的圆上,若存在,求出直线l的方程;若不存在,说明理由.

分析 (Ⅰ)由F1(-1,0),C(-2,0)得:$a=2,b=\sqrt{3}$,即可求出椭圆M的标准方程;
(Ⅱ)通过设B(x0,y0)(-2<x0<2),利用$\overrightarrow{B{F_1}}•\overrightarrow{BC}=(-1-{x_0},-{y_0})•(-2-{x_0},-{y_0})$=$2+3{x_0}+{x_0}^2+{y_0}^2$=$\frac{1}{4}{x_0}^2+3{x_0}+5=0$,进而可得结论.

解答 解:(Ⅰ)由F1(-1,0),C(-2,0)得:$a=2,b=\sqrt{3}$.…(4分)
所以椭圆M的标准方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.…(5分)
(Ⅱ)设B(x0,y0)(-2<x0<2),则$\frac{{{x_0}^2}}{4}+\frac{{{y_0}^2}}{3}=1$,…(6分)
因为F1(-1,0),C(-2,0),
所以$\overrightarrow{B{F_1}}•\overrightarrow{BC}=(-1-{x_0},-{y_0})•(-2-{x_0},-{y_0})$=$2+3{x_0}+{x_0}^2+{y_0}^2$
=$\frac{1}{4}{x_0}^2+3{x_0}+5=0$…(9分)
解得:x0=-2或-10…(10分)
又因为-2<x0<2,所以点B不在以F1C为直径的圆上,
即不存在直线点l,使得点B在以线段F1C为直径的圆上.…(12分)

点评 本题是一道直线与圆锥曲线的综合题,考查运算求解能力,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}是公差不为0的等差数列,{bn}是等比数列,且b1=a1=3,b2=a3,b3=a9
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设${c_n}={log_3}b_n^5-32$,求数列{|cn|}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:元/千克)与销售价格x(单位:元/千克)满足关系式$y=\frac{m}{x-3}+8{({x-6})^2}$,其中3<x<6,m为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ) 求m的值;
(Ⅱ) 若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线y=a与函数y=|$\frac{lnx+1}{{x}^{3}}$|的图象恰有3个不同的交点,则实数a的取值范围为(  )
A.{$\frac{{e}^{2}}{3}$}B.(0,$\frac{{e}^{2}}{3}$)C.($\frac{{e}^{2}}{3}$,e)D.($\frac{1}{e}$,1)∪{$\frac{{e}^{2}}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等比数列{an}满足a1=2,16a3a5=8a4-1,则a2=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=|lnx|,令$a=f({\frac{1}{4}})$,$b=f({\frac{1}{3}})$,c=f(2),则a,b,c的大小关系是a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数g(x)=ex+ae-x(x∈R)是奇函数,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{4}$π$\frac{7π}{4}$$\frac{5π}{2}$$\frac{13π}{4}$
Asin(ωx+φ)030-30
(Ⅰ)请将上表空格中处所缺的数据填写在答题卡的相应位置上,并直接写出函数f(x)的解析式;
(Ⅱ)将y=f(x)图象上所有点的横坐标缩短为原来的$\frac{1}{3}$,再将所得图象向左平移$\frac{π}{4}$个单位,得到y=g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,定点A和B都在平面α内,顶点P∉α,PB⊥α,C是α内异于A和B的动点,且PC⊥AC,则BC与AC的位置关系是AC⊥BC.

查看答案和解析>>

同步练习册答案