精英家教网 > 高中数学 > 题目详情
(1)利用关系式,证明换底公式

(2)利用(1)中的结果求式子之值。

答案:
解析:

证明:(1)

(2)代入公式可得


练习册系列答案
相关习题

科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题

数列,满足

(1)求,并猜想通项公式

(2)用数学归纳法证明(1)中的猜想。

【解析】本试题主要考查了数列的通项公式求解,并用数学归纳法加以证明。第一问利用递推关系式得到,并猜想通项公式

第二问中,用数学归纳法证明(1)中的猜想。

①对n=1,等式成立。

②假设n=k时,成立,

那么当n=k+1时,

,所以当n=k+1时结论成立可证。

数列,满足

(1)并猜想通项公。  …4分

(2)用数学归纳法证明(1)中的猜想。①对n=1,等式成立。  …5分

②假设n=k时,成立,

那么当n=k+1时,

,             ……9分

所以

所以当n=k+1时结论成立                     ……11分

由①②知,猜想对一切自然数n均成立

 

查看答案和解析>>

同步练习册答案