精英家教网 > 高中数学 > 题目详情
如图:已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥底面ABCD,E为PC中点.
(1)求证:平面EDB⊥平面PBC;
(2)求二面角B-DE-C的平面角的正切值.
分析:(1)要证两个平面互相垂直,常规的想法是:证明其中一个平面过另一个平面的一条垂线,由于侧面PDC为正三角形,所以,DE⊥PC,那么我们自然想到:是否有DE⊥平面PBC,由此可证结论;
(2)确定∠BEC就是二面角B-DE-C的平面角,在Rt△ECB中,可求二面角B-DE-C的平面角的正切值.
解答:(1)证明:∵面PDC⊥底面ABCD,交线为DC,∴DE在平面ABCD内的射影就是DC.
在正方形ABCD中,DC⊥CB,∴DE⊥CB.
又PC∩BC=C,PC,BC?面PBC,∴DE⊥面PBC.
又DE?面EDB,
∴平面EDB⊥平面PBC.
(2)解:由(1)的证明可知:DE⊥面PBC,所以,∠BEC就是二面角B-DE-C的平面角.
∵面PDC⊥底面ABCD,交线为DC,平面ABCD内的直线CB⊥DC.
∴CB⊥面PDC.
又PC?面PDC,∴CB⊥PC.
在Rt△ECB中,tan∠BEC=
BC
CE
=2
点评:本题考查面面垂直,考查线面垂直,考查面面角,解题的关键是掌握面面垂直的判定方法,正确作出面面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案