精英家教网 > 高中数学 > 题目详情
甲、乙两人玩猜数字游戏,规则如下:
①连续竞猜3次,每次相互独立;
②每次竟猜时,先由甲写出一个数字,记为a,再由乙猜甲写的数字,记为b,已知a,b∈{0,1,2,3,4,5},若|a-b|≤1,则本次竞猜成功;
③在3次竞猜中,至少有2次竞猜成功,则两人获奖.
(I)求甲乙两人玩此游戏获奖的概率;
(Ⅱ)现从6人组成的代表队中选4人参加此游戏,这6人中有且仅有2对双胞胎记选出的4人中含有双胞胎的对数为X,求X的分布列和期望.
【答案】分析:(I)由题意基本事件的总数为个,记事件A为“甲乙两人一次竞猜成功”,分|a-b|=0和|a-b|=1.利用古典概型的概率计算公式即可得出P(A)=.设随机变量ξ表示在3次竞猜中竞猜成功的次数,则ξ~B.则甲乙两人获奖的概率P(ξ≥2)=1-P(ξ=0)-P(ξ=1).
(II)由题意可知:从6人中选取4人共有种选法,双胞胎的对数X的取值为0,1,2.X=0,表示的是分别从2对双胞胎中各自选取一个,再把不是双胞胎的2人都取来;X=1,表示的是从2对双胞胎中选取一对,另外2人的选取由两种方法,一种是把不是双胞胎的2人都选来,另一种是从另一双胞胎中选一个,从不是双胞胎的2人中选一个;X=2,表示的是把2对双胞胎2人都选来.据此即可得出X的分布列和EX.
解答:解:(I)由题意基本事件的总数为个,记事件A为“甲乙两人一次竞猜成功”,若|a-b|=0,则共有6种竞猜成功;若|a-b|=1,a=1,2,3,4时,b分别有2个值,而a=0或5时,b只有一种取值.利用古典概型的概率计算公式即可得出P(A)=
设随机变量ξ表示在3次竞猜中竞猜成功的次数,
则甲乙两人获奖的概率P(ξ≥2)=1-P(ξ=0)-P(ξ=1)=1--=
(II)由题意可知:从6人中选取4人共有种选法,双胞胎的对数X的取值为0,1,2.
则P(X=0)==,P(X=1)==,P(X=2)==
随机变量X的分布列为
期望为E(X)=
点评:正确分类和熟练掌握古典概型的概率计算公式、二项分布、随机变量的分布列和数学期望是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a,再由乙猜甲刚才想的数字把乙猜的数字记为b,且a,b∈{0,1,2,3,…9},若|a-b|≤1,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为(  )
A、
1
9
B、
2
9
C、
7
18
D、
4
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•莱芜二模)甲、乙两人玩猜数字游戏,规则如下:
①连续竞猜3次,每次相互独立;
②每次竟猜时,先由甲写出一个数字,记为a,再由乙猜甲写的数字,记为b,已知a,b∈{0,1,2,3,4,5},若|a-b|≤1,则本次竞猜成功;
③在3次竞猜中,至少有2次竞猜成功,则两人获奖.
(I)求甲乙两人玩此游戏获奖的概率;
(Ⅱ)现从6人组成的代表队中选4人参加此游戏,这6人中有且仅有2对双胞胎记选出的4人中含有双胞胎的对数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a,b∈{0,1,2,…..,9},若|a-b|≤2,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为
11
25
11
25

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二第一次月考理科数学试卷 题型:选择题

甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为 (    ) 

A.    B. C.  D.

 

查看答案和解析>>

同步练习册答案