精英家教网 > 高中数学 > 题目详情
若X~B(n,p),且E(X)=6,V(X)=3,则P(X=1)的值为________.
3×2-10

∴P(X=1)=C12112=3×2-10.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

为了解心肺疾病是否与年龄相关,现随机抽取了40名市民,得到数据如下表:
 
患心肺疾病
不患心肺疾病
合计
大于40岁
16
 
 
小于等于40岁
 
12

合计
 
 
40
已知在全部的40人中随机抽取1人,抽到不患心肺疾病的概率为
(1)请将列联表补充完整;
(2)已知大于40岁患心肺疾病市民中,经检查其中有4名重症患者,专家建议重症患者住院治疗,现从这16名患者中选出两名,记需住院治疗的人数为,求的分布列和数学期望;
(3)能否在犯错误的概率不超过0.01的前提下认为患心肺疾病与年龄有关?
下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在一段线路中并联着3个自动控制的常开开关,只要其中一个开关能够闭合,线路就能正常工作,假定在某段时间内,每个开关能够闭合的概率都是0.7,计算在这段时间内:
(1)开关JA,JB恰有一个闭合的概率;
(2)线路正常工作的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)2009年4月22日是第40个“世界地球日” (World Earth Day),在某校举办的《2009“世界地球日”》知识竞赛中,甲、乙、丙三人同时回答一道有关保护地球知识的问题,已知甲回答对这道题的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答对的概率是
(Ⅰ)求乙、丙两人各自回答对这道题的概率.
(Ⅱ)求甲、乙、丙三人中恰有两人回答对该题的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某校150名教职工中,有老年人20个,中年人50个,青年人80个,从中抽取20个作为样本.
①采用随机抽样法:抽签取出30个样本;
②采用系统抽样法:将教工编号为00,01,…,149,然后平均分组抽取30个样本;
③采用分层抽样法:从老年人,中年人,青年人中抽取30个样本.
下列说法中正确的是(  )
A.无论采用哪种方法,这150个教工中每一个被抽到的概率都相等
B.①②两种抽样方法,这150个教工中每一个被抽到的概率都相等;③并非如此
C.①③两种抽样方法,这150个教工中每一个被抽到的概率都相等;②并非如此
D.采用不同的抽样方法,这150个教工中每一个被抽到的概率是各不相同的

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设随机变量X~B(2,p),Y~B(3,p),若P(X≥1)=,则P(Y=2)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某医院将一专家门诊已诊的1000例病人的病情及诊断所用时间(单位:分钟)进行了统计,如下表.若视频率为概率,请用有关知识解决下列问题.
病症及代号
普通病症
复诊病症
常见病症
疑难病症
特殊病症
人数
100
300
200
300
100
每人就诊时间(单位:分钟)
3
4
5
6
7
表示某病人诊断所需时间,求的数学期望.
并以此估计专家一上午(按3小时计算)可诊断多少病人;
某病人按序号排在第三号就诊,设他等待的时间为,求
求专家诊断完三个病人恰好用了一刻钟的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,决出胜负即停止比赛。按以往的比赛经验,每局比赛中,甲胜乙的概率为
(1)求比赛三局甲获胜的概率;
(2)求甲获胜的概率;
(3)设比赛的局数为X,求X的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知随机变量X服从二项分布,X~B,则P(X=1)的值为________.

查看答案和解析>>

同步练习册答案